St. Joseph's College of Arts and Science, Cuddalore.

Question Bank

PG Research Department of Mathematics

Class: I B.Sc (Physics and Chemistry)

Subject Name: Allied Mathematics II

Subject Code: AMT202S

Staff Name: A. Savitha Mary

Semester : II

Unit -1

3- marks

- 1. If $x = \cos\theta + i\sin\theta$, what is $(x 1/x)^n$?
- 2. If $x = \cos\theta + i\sin\theta$, write the expansion of $x^4 1/x^4$.
- 3. Evaluate the following:
 - (i) $\lim_{n\to 0} \frac{x-\sin x}{x^2}$ (ii) $\lim_{n\to 0} \frac{\tan x-\sin x}{x^2}$. (iii) $\lim_{n\to 0} \frac{\sinh x-\sin x}{x^2}$.
- 4. If $\frac{\sin \theta}{x} = \frac{2165}{2166}$ show that θ is equal to 3° 1' nearly.
- 5. Find the logarithm of i.

6- marks:

1.	Express $\cos 6\theta$ as a polynomial in $\cos \theta$.	
2.	Express $\cos 6\theta$ as a polynomial in $\sin \theta$	
3.	show that $\cos 8\theta = 128 \cos^8 \theta + 160\cos^4 - 32\cos^2 \theta + 1$	
4.	Express sin 6θ /sin θ as a polynomial in cos θ .	
5.	Express sin 6θ /sin θ as a polynomial in sin θ	
6.		S
	how that $\sin \frac{6\theta}{\sin \theta} = 32 \cos^5 \theta - 32 \cos^3 \theta + 6 \cos \theta$.	
7.		
	Express $\cos 5\theta \cos \theta$ as a polynomial in	
	(i) $\cos \theta$	
	(ii) Sin θ .	
8.		W
	rite the expansion of $\tan n\theta$.	
9.		W
	rite the expansion of $tan(\theta_1 + \theta_2 + + \theta_n)$.	
10).	
	If \propto , β , γ are the roots of the equation $x^3+px^2+qx+p=0$ prove that	
	$\tan^{-1}\alpha + \tan^{-1}\beta + \tan^{-1}\gamma = n\pi$.	
11		
	Find the approximate values of θ in radian if	
	$(i)\frac{\sin\theta}{\theta} = 863/864,$	
	$(ii)\frac{\tan\theta}{\theta}=2524/2523.$	
12	·.	
	Show the following results:	
13		$\lim_{n\to 0} \frac{\tan 2x}{4x}$

=3/4.

 $\lim_{n\to\pi/2}\frac{\cos x}{\cos x}$

14.

=1/3.

15.

```
Finding the real and imaginary parts
(i)\sin(\theta+i\phi), \sin(\theta-i\phi)
(ii)\tan(\theta+i\phi), \tan(\theta-i\phi).
```

16.

Expand sin 7 θ as a polynomial in sin θ . Hence show that sin $\pi/7.\sin 2\pi/7.\sin 3\pi/7.\sin 4\pi/7.\sin 5\pi/7.\sin 6\pi/7=-7/64$.

17.

If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi \setminus 2$, show that xy + yz + zx = 1.

18.

Show that series for tan x as far as the term x^5 .

19.

Expansions of $\sin \theta$, $\cos \theta$, $\tan \theta$ in θ .

20.

Relations between circular and hyperbolic functions.

10 marks

- 1. Show that 1. $2^5 \cos^6\theta = \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10$,
- 2. Show that $2^6 \cos^7 \theta = \cos 7\theta + 7 \cos 5\theta + 21 \cos 3\theta + 35 \cos \theta$.
- 2. Prove the results in the following sums:
 - $2^7 \cos^8\theta = \cos 8\theta + 8 \cos 6\theta + 28 \cos 4\theta + 56 \cos 2\theta + 35.$
- 3. Prove the results in the following sums:

 $2^{\circ}\cos^{5}\theta \sin^{4}\theta = \cos 9\theta + \cos 7\theta - 4 \cos 5\theta - 4 \cos 3\theta + 6 \cos \theta$.

- 4. Express $\sin 5\theta / \sin \theta$ as a polynomial in (i) $\cos \theta$ and (ii) $\sin \theta$.
- 5. Express sin $7\theta/\sin\theta$ as a polynomial in (i) Cos θ ,(ii) Sin θ .

6. Prove the following:

 $\cos 8\theta = 1-32\sin^2\theta + 160 \sin^4\theta - 256\sin^6\theta + 128 \sin^8\theta.$

7. Express sin 9 θ \cos θ in terms of sin θ .

8. If $\tan x = \tan hx^2$, show that $\cos x \cos hx = 1$.

9. If $\tan(\theta + i\phi) = \cos \alpha + i\sin \alpha$, then show that

(i) $\tan 2\emptyset = \sin \propto$, (ii) $\cos h2\emptyset = \sec \propto$.

10. Prove that hyperbolic functions.

11. If sin(A+iB)=x+iy, then

1. Show that x=sin A cosh B,

2.show that $x^2 \sin^2 A - y^2 / \cos^2 A = 1$,

3. Show that $x^2 + \frac{1}{\sin h^2 B} = 1$.

12. If $\log(\sin \theta + i\phi) = A + iB = A + iB$, prove that $2e^{2A} = \cos 2\phi - \cos 2\theta$.

13. If $sin(x+iy) = tan (\theta+i\phi)$, show that

1. Sin $2\theta \cot x = \sinh 2\phi \coth y$,

2. Sin $2\theta/\sin 2\phi = \tan x/\tanh y$.

14.If $sin(x+iy) = r(\cos \theta + isin\theta)$, then show that,

1. $r^2 = 1/2 [\cosh 2y - \cos 2x]$,

2. $tan\theta = \cot x tanh y$.

15. If log [$\sin(\theta + i\phi)$]=A+iB, prove that $2e^{2a}$ =cosh 2ϕ -cos 2θ .

3 Marks:

- 1. Eliminate the arbitrary constants a, b from z=ax+by to get an equation in x, y, z.
- 2. Eliminate the arbitrary function f from $z=f(x^2+Y^2)$.
- 3. Eliminate the arbitrary function f from $f(x^2+y^2,z-xy)=0$
- 4. Solve $\sqrt{p} + \sqrt{q} = x$.
- 5. Solve pq=y.

6 Marks:

- 1. From a partial differential equation by eliminating the constants a and b from the equation z=(x+a)(y+b)2. Eliminate the arbitrary function f from $z=e^{y}$ f(x+y). Eliminate the arbitrary function f from $f(xy+z^2,x+y+z)=0$. 3. Eliminate the arbitrary function f from $f(x^2+y^2,z-xy)=0$. 4. Eliminate the arbitrary function f from $f(x^2+y^2+z^2,z^2-z^2)$ 5. 2xy = 06. Eliminate the arbitrary function f_1 and f_2 from $z = f_1(x+y) + f_2(x-y).$ 7. Eliminate f and \emptyset fromz=(x+ay)+ \emptyset (x-ay). 8. Eliminate f and g from z=f(x+ay)+g(x+by). Solve $p^2+q^2=npq$. 9. 10. Solve pq+p+q=0. 11. Solve $xypq=z^2$. 12. Solve $xp+p^2=q$. 13. Solve $z^2(p^2+q^2+1)=1$.
- 14. Solve $z^4q^2 z^2p = 1$.

- 15. Solve $pz=1+q^2$
- 16. Solve q-p+x-y=0.
- 17. Solve the equations:

1.pq=z, 2.p(1+q)=qz, 3. Zpq=p+q, 4. Z=p²-q²

- 18. Solve the following:
 - 1.pq=x, 2. P=2qx, 3. *p*²(1+*x*²)=q.
- 19. Solve x+y $\partial z/\partial x=0$.
- 20. Solve $\partial^2/\partial x \partial y = x^2 + y^2$.

10- Marks:

- 1. Eliminate the arbitrary function f from
 - (i) Z=x+y+f(xy),
 (ii) z=f(y/x), 3.z=xf(y/x),
 (iii) z=f(xy/z),
 (iii) f(x²+y²+z², X+y+z)=0.
- 2. Solve $(x/p)^n + (y/q)^n = z^2$.
- 3. Solve $p=(1+q^2)y^2$.
- 4. Solve the equation $z^2(p^2+q^2)=x^2+y^2$.

- 5. Solve the equations xp+zq=y.
- 6. Solve the equation $(x^2-y^2-z^2)p+2xyq=2zx$.
- 7. Solve (y-z)p+(z-x)q=x-y.
- 8. Solve x(y-z)p+y(z-X)q=z(x-Y).
- 9. Solve $x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2)$.
- 10. Solve the equation $x(y^2-z^2)p+y(x^2-z^2)q=z(y^2-x^2)$.
- 11. Solve (mz-ny)p+(nx-lz)q=ly-mx.
- 12. Solve $(x^2-yz)p+(y^2-zx)q=z^2-xy$.
- 13. Find the integral surface of $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$
- 14. Solve the following equations

(i) Ap+bq+cz=0,
(ii) Xp+yq=z,
(iii) P-q=sin(x+y).

15. Solve the following equations:

(i)
$$x^2p+y^2q=(x+y)z$$
,
(ii) $Z(xp-yp)=y^2-x^2$.

16. Solve the equations:

(i)xzp+yxq=xy,
(ii)
$$(y^2+z^2)$$
p-xyq=-xz

17. Find the general solutions of

(i) $(y+zx)+(x+yz)=x^2-y^2$.

18. Find the integral surface of the partial differential equation xp+yp=z, passing through the parabola $y^2=4x$, z=1.

19. Show that the integral surface satisfying 4yzp+q+2y=0 and passing through the curve x+z=2, $y^2+z^2=1$ is $y^2+z^2+x+z=3$.

20. Solve the following equations $(y^3x-2x^4)p+(2y^4-x^3y)q=9z(x^3-y^3)$.

Unit-3

3- Marks

- 1. Define Scalar and vector point functions.
- 2. Define Vector Point functions.
- 3. State angle between two surfaces.
- 4. State unit vector normal to the surface.
- 5. Find the directional derivative of the function $x^2 + y^2 + z^2$ at (3,6,9) in the direction whose d.c.'s are 1/3, 2/3, 2/3.
- 6. Find the unit vector normal to the surface $x^2 + y^2 + 2z^2 = 4$.
- 7. Find $\nabla \phi$ if
 - (i) $\phi = x^2 y^3 z^2$
 - (ii) $\phi = xyz x^2$
- 8. Find $\nabla \phi$ in the following cases at the points specified:

(i)
$$\phi(x, y, z)=2xy-y^2$$
 at (1, 3, 2)

- (ii) $\phi(x, y, z) = x = xy^2 + yz^2$ at (1, 0, 0)
- (iii) $\phi(x, y, z) = y^2(x-z)$ at (1, 1, 2)
- 9. Define solenoidal Vector.
- 10. Define Irrotational Vector.

11. Show that the Vector $\overset{P}{A} = x^2 z^2 \overset{P}{i} + xyz^2 \overset{P}{j} - xz^3 \overset{P}{k}$ solenoid.

12. Determine the constant *a* so that the vector $\vec{F} = (x+2y)\vec{i} + (y-2z)\vec{j} + (x+az)\vec{k}$.

- 13. Show that F = yzi + zxj + xyk is irrotational.
- 14. If $\stackrel{P}{A} = axyi + (x^2 + 2yz)j + y^2k$ is irrotational, find the value of a.
- 15. If r = xi + yj + zk, show that $\nabla r = 3$.
- 16. Show that $x^{2}i^{\mu} + 2xyj^{\mu} 4xzk$, is solenoidal.
- 17. Find the values of m if the following vectors are solenoidal:
 - (i) r = (x+2y)i + (my+4z)j + (5z+6x)k, (ii) r = (2x+y)i + (4x-11y+3z)j + (3x+mz)k, (iii) r = (x+3y)i + (y-2z)j + (x+mz)k.
- 18. Show that $\overset{P}{A} = (4xy z^3)^{P}_{i} + 2x^2 \overset{P}{j} 3xz^2 \overset{P}{k}$ is irrotatioanl.
- 19. If $\hat{r} = x\hat{i} + y \hat{j} + z\hat{k}$ and $\vec{r} = r\hat{r}$, show that (i)

6- Marks

- 1. Prove that the directional derivative of $\oint = x^3 y^2 z$ at (1,2,3) is a maximum along the direction $\vec{9i} + \vec{3j} + \vec{k}$. Find this maximum directional derivative.
- 2. Find the directional derivative of the following scalar point functions at the given points in the given directions.

Si. Function ϕ	Point	Direction
---------------------	-------	-----------

No.			
(i)	xy+yz+zx	(1, 1, 3)	$\vec{i} + \vec{2j} + \vec{2k}$
(ii)	Xyz	(2, 1, 1)	$\vec{j} + \vec{k}$
(iii)	$x^2 yz + 4xz^2$	(1, -2, -1)	$\vec{2i} - \vec{j} - \vec{2k}$
(iv)	2xy+5yz+zx	(1, 2, 3)	$\vec{3i} - \vec{5j} + \vec{4k}$

- 3. Find the angle between the surfaces $x^2 + y^2 + 2z^2 = 4$, $z = x^2 + y^2 3$ at the point (2, -1, 2).
- 4. Find the equation of the tangent plane to the ellipsoid $x^2 + 2y^2 + 3z^2 = 6$ at (1, 1, 1).
- 5. Find the directional derivatives of ϕ at the given point in the directional of the given vector.

Si. No	Functions ϕ	Point	Vector
(i)	$2x^{2}+3y^{2}+z^{2}$	(2, 1, 3)	$\vec{i} - \vec{2k}$
(ii)	xy ²	(1, 1, 0)	$\vec{i} + \vec{j} + \vec{k}$
(iii)	Yz ²	(0, 1, 1)	$\vec{i} + \vec{j} + \vec{k}$
(iv)	$3xy^2-x^2yz$	(1, 2, 3)	$\vec{i} - \vec{2}\vec{j} + \vec{2}\vec{k}$
(v)	$xyz-xy^2z^3$	(1, 2, -1)	$\vec{i} - \vec{j} - \vec{3k}$
(vi)	$X^3+y^3+z^3$	(1, -1, 2)	$\vec{i} + \vec{2j} + \vec{k}$
(vii)	$4xz^2+2xyz$	(1, 2, 3)	$\vec{2i} + \vec{j} - \vec{k}$
(viii)	x^2y^2z	(2, 1, 4)	$\vec{i} + \vec{2j} + \vec{2k}$
(ix)	x ² yz+4xz ² +xyz	(1, 2, 3)	$\vec{2i} + \vec{j} - \vec{k}$

6. Find the unit vectors h normal to the following surfaces at the specified points.

(i) $x^2+2y^2+z^2=7$ at (1, -1, 2) (ii) $x^2+y^2-z^2=1$ at (1, 1, 1) (iii) $x^2+3y^2+2z^2=6$ at (2, 0, 1) (iv) $x^2+y^2-z=1$ at (1, 1, 1) (v) $x^3-xyz+y^3=1$ at (1, 1, 1)

7. Find the maximum value of directional derivative of the function $\phi = 2x + 3y^2 + 5z^2$ at the point (1, 1, -4).

- 8. Find the equation of the tangent plane to the surface $x^2+2y^2+3z^2=6$ at (1, -1, 1)
- 9. Find the angle between the normal to the surface xy-z²=0 at the points (1, 4, 2) and (-3, -3, 3).
- 10. Prove that curl $(\vec{r} \times \vec{a}) = -\vec{2a}$, where \vec{a} is a constant vector.
- 11. Find Curl F in the following cases:
 - (i) $F = x^2 y_i^p + y^2 z_j^p + z^2 x_k^p$ (ii) $F = xyz_i^p + xyz_j^2 + x^2 yz_k^p$
 - 12. Find the value of the constants a, b, c so that $\vec{F} = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k}$
 - 13. If $F = xyz^{\rho} + xyz^{2}j + x^{2}yz^{k}$, then find div curl F.
 - 14. If $\vec{F} = x^2 y_i^p + y^2 z_j^p + z^2 x_k^p$, then find div curl \vec{F} .
 - 15. Find $\nabla \times \vec{F}$ if $\vec{F} = xz^{3}\vec{i} 2x^{2}yz\vec{j} + 2yz^{4}\vec{k}$.
 - 16. Find the curl of the following functions at the specified points.

(i)
$$x^{2}z^{p} - 2y^{3}z^{2}j + xy^{2}z^{k}$$
 at (1, -1, 1)
(ii) $xyz^{p} + 3x^{2}yz^{p} + (xz^{2} - y^{2}z^{k})$ at (1, 2, -1)

17. Find a if $\stackrel{P}{A} = (4xy - z^3)\stackrel{P}{i} + ax^2\stackrel{P}{j} - 3xz^2\stackrel{P}{k}$ is irrotational.

10 – Marks

- 1. Find $\phi(x, y, z)$ given that $\phi(1, 1, 1)=3$ and $\nabla \phi = (y + y^2 + z^2)\vec{i} + (x + z + 2xy)\vec{j} + (y + 2zx)\vec{k}.$
- Find the angle between the surfaces x²+yz=2 and x+2y-z=2 at (1, 1, 1).
- 3. Find the angle between the surfaces $x^2+y^2=4-5z$ and $x^2+y^2+3z^2=104$ at (5, 2, -5).

4. Find ϕ if $\nabla \phi$ is

- (i) $(6xy+z^3)\vec{i} + (3x^2-z)\vec{j} + (3xz^2-y)\vec{k}$
- (ii) $(2yz+1)i + x^2zj + x^2yk$
- (iii) $(y+\sin z)\vec{i} + x\vec{j} + x \cos z\vec{k}$
- (iv) $(y^2\cos x + z^3)\dot{i} + (2y\sin x 4)\vec{j} + 3xz^2\vec{k}$
- 5. If $\vec{r} = \vec{xi} + \vec{yj} + \vec{zk}$ and $\left| \vec{r} \right| = r$, then $\nabla f(r) = \left[\frac{df(r)}{dr} \right] \hat{r} = f'(r)\hat{r}$.

Unit 4

3 Marks

- 1. State Green's theorem
- 2. State stroke's theorem.
- 3. State gauss theorem.
- 4. Evaluate the Green's theorem $\int_{c} (xy+x^2)dx+(x^2+y^2)dy$, where C is the square formed by the lines x=-1, x=1, y=-1,y=1 in the xOy plane.
- 5. Using the Green's theorem, show that $\int_c (3x^2 8y^2) dx + (4y 6xy) dy = 20$.

6- Marks:

1. Evaluate by Green's theorem $\int_{c} e^{-x}(\sin y \, dx + \cos y \, dy)$, where C is the rectangle with vertices (0,0), (π ,0), (π , π \2),(0, π \2).

- 2. Evaluate $\int_c xy \, dx \cdot x^2 \, dy$ by conveerting it into a double integral. It is given that C is the boundry of the region bounded by the line y=x and the parabola x^2 =y.
- 3. Verify Green's theorem for $\int_c (x-2y)dx+xdy$, where C is the circle $x^2+y^2=1$.
- 4. Verify Green's theorem for $\int_c x^2(1+y)dx + (y^3+x^3)dy$, where C is the square formed by the lines $y=\pm 1$, $x=\pm 1$.
- 5. If $\bar{A}=x^3+y^3\bar{j}+z^3\bar{k}$ and s is the surface of the sphere $x^2+y^2+z^2=a^2$, then show that $\int \int_s \bar{A}.ds = 12/5 \pi a^5$
- 6. If $\vec{A} = \vec{x}\vec{i} + \vec{y}\vec{j} 2\vec{z}\vec{k}$ and s is the curved surface of the upper hemisphere $x^2 + y^2 + z^2 = a^2$, then show that $\iint s \bar{A} \cdot \hat{n} \, ds = 0$.
- 7. If $\vec{A}=6z\vec{\imath}+(2x+y)\vec{\jmath}-x\vec{k}$ and s is the surface of the cylindrical solid bounded by y=0,y=8;x=0,z=0;x²+z²=9,then show that $\int \int_{s} \bar{A}.\hat{n} \, ds=18\pi$.
- 8. Evaluate $\int \int_{s} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy$ over the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
- 9. Evaluate $\int \int_{s} x^{3} dy dz + x^{2} y dx + x^{2} dx dy$, where S is the surface of the cube bounded by the planes x=0, y=0, z=0, x=a, y=a, z=a.

- 10. Apply Gauss divergence theorem to evaluate $\int \int_{s} (x^{3}-yz) dy dz 2x^{2} y dz dx + z dx dy$ over the surface of the cube bounded by the cooridate planes and the planes x=y=z=a.
- 11.Show that, for any closed surface S, $\int \int_{s} (\phi \nabla \Psi \Psi \nabla \phi) d\bar{s} = \int \int \int_{v} \nabla d\bar{s} = \int \nabla \nabla dv$.
- 12. Show that the volume bounded by a closed surface S is $1\backslash 3 \int \int_{S} \bar{r} \cdot \hat{n} \, dS$.
- 13. If S is the surface of the sphere $x^2+y^2+z^2=9$, then show that $\int \int_{s} \bar{r} \cdot \hat{n} dS=108\pi$.
- 14. If S is the surface of the rectangular parallelopiped formed by the planes x=-1, x=1, y=-2, y=2, z=-3, z=3, show that $\int \int_{s} \bar{r} \cdot \hat{n} \, dS = 144$.
- 15. Evaluate $\int \int_{s} \overline{A} \cdot \hat{n} Ds$, if $\overline{A} = 2xy\overline{i} + yz^{2}\overline{j} + xz\overline{k}$ and S is the surface of the parallelopiped formed by the planes x=0, x=2, y=0, y=1, z=0, z=3.
- 16. Apply divergence theorem to evaluate $\int \int_{s} (x+z) dy dz + (y+z) dz dx + (x+y) dx dy$, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.
- 17. Verify Gauss' divergence theorem for $\overline{F} = x^2 \overline{\imath} + 2y^2 \overline{\jmath} + 3z^2 \overline{k}$ taken over the cube bounded by the planes x=0, x=1, y=0, y=1, z=0, z=1.
- 18.Using Stoke's theorem, evaluate $\int_c (\sin z dx \cos x dy + \sin y dz)$, where C is the boundary of the rectangle $0 \le x \le \pi$, $0 \le y \le 1$, z=3.

- 19. Verify stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} + 2xy\overline{j}$ taken over the rectangle bounded by x=0, x=a, y=0, y=b.
- 20. Verify Stoke's theorem for $\overline{A}=y\overline{\imath}+2yz\overline{\jmath}+y^2\overline{k}$ taken over the upper half surface S of the sphere $x^2+y^2+z^2=1$, $z\geq 0$ and the vounding cirlce C, $x^2+y^2=1$, z=0.

10 Marks:

- 1. Prove that the area enclosed by a simple closed curve C is $1/2\int_c x \, dy-y \, dx$, 2. Evaluate $\int_c x \, dy-y \, dx$, where C is the circle $x^2+y^2=4$.
- 2. Verify Green's theorem for $\int_{c} (xy+y^2)dx+x^2dy$, where C is the closed curve of the region bounded by the line y=x and the parabola y= x^2 .
- 3. Verify Green's theorem for $\int_c (3x^2 8y^2) dx + (4y 6xy) dy$, where C is the boundry of the region enclosed be the parabolas $x^2 = y$ and $y^2 = x$.
- 4. Verify Green's theorem for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$, where C is the boundry of the region R enclosed by the straight lines y=0,x+y=1, x=0.
- 5. Verify Green's theorem for $\int_{c} x^{2}(1+y)dx + (y^{3}+x^{3})dy$, where C is the square formed by $x=\pm a, y=\pm a$
- 6. Evaluate $\int \int_{s} x^{2} dy dz + y^{2} dz dx + 2z(xy-x-y) dx dy$, where S is the surface of the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.

- 7. Verify divergence theorem for F=x²i+y²j+z²k taken over the cube bounded by the planes x=0, x=1, y=0,y=1, z=0, z=1 now we have to verify that ∫∫_sF.n ds=∫∫∫_v ∇.fdV.
- Verify divergence theorem for F=4xzī-y²j+yzk̄ taken over the cube bounded by x=0, x=1, y=0, y=1, z=0, z=1, now we have to verify that ∫∫_s F̄.n̂ dS=∫∫∫_v ∇.F̄ dV.
- 9. Verify divergence theorem for $\overline{A}=4x\overline{i}-2y^{2}\overline{j}+z^{2}\overline{k}$ and the surface S of the cylinder bounded by z=0, z=3, $x^{2}+y^{2}=4$.
- 10. Verify divergence theorem for $\overline{A}=a(x+y)\overline{i}+a(y-x)\overline{j}+z^2\overline{k}$. taken over the region bounded by the upper hemisphere $x^2+y^2+z^2=a^2$ and the plane z=0.
- 11. Verify Gauss' divergence theorem for $\overline{f} = (x^3 yz)\overline{i} 2x^2y\overline{j} + 2\overline{k}$ over the cube bounded by x=0, y=0, z=0, x=a, y=a, z=a, now we have to verify that $\int \int_s \overline{f} \cdot \hat{n} \, dS = \int \int \int_v \nabla \cdot \overline{f} \, dV$.
- 12. Apply divergence theorem to evaluate $\int \int_{s} (x+z) dy dz + (y+z) dz$

dx+(x+y)dx dy, where S is the surface of the sphere $x^2+y^2+z^2=a^2$.

13. Verify Gauss' divergence theorem for $\overline{F} = x^2 \overline{\imath} + 2y^2 \overline{\jmath} + 3z^2 \overline{k}$ taken over the cube bounded by the planes x=0, x=1, y=0, y=1, z=0, z=1.

- 14. Verify Gauss' divergence theorem for $\overline{F} = x^3 \overline{\imath} + y^3 \overline{\jmath} + z\overline{k}$ taken over the cube bounded by x=0, x=a, y=0, y=a, z=0, z=a.
- 15. Verify Gauss' divergence theorem for $\overline{A}=(x+y)\overline{i}+x\overline{j}+z\overline{k}$ and the bounded by the planes x=0, x=1, y=0, y=1, z=0, z=1.
- 16. Verify divergence theorem for $\overline{A}=2xz\overline{i}+yz\overline{j}+z^2\overline{k}$ and the region bounded by the upper half of the sphere $x^2+y^2+z^2=a^2$ and the plane z=0.
- 17. Verify Stoke's theorem for the vector $\overline{F} = (x^2 y^2)\overline{i} + 2xy\overline{j}$ in the rectangular region in the xOy plane bounded by the lines x=0, x=a, y=0, y=b.
- 18. Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\overline{i} + 2xy\overline{j}$ taken over the rectangle bounded by x=0, x=a, y=0, y=b.
- 19. Verify Stoke's theorem for $\overline{A} = x^2 \overline{i} + xy \overline{j}$ taken over the square S in the xy plane whose vertices are o (0,0,0), A(a,0,0), B(a,a,0), c(0,a,0) and oveer its boundary.
- 20.Verify stoke's theorem for the function $\overline{A} = x^2 z \overline{\imath} + xy \overline{\jmath}$ integrated along the rectangle in the plane z=0, where the sides are along the lines x=0, y=0, x=a, y=b.

Unit- 5

3 marks:

- 1. Define relation between Δ and E.
- 2. Define operator E^{-1} .
- 3. Write newton's forward formula.
- 4. Write newton's backward formula.
- 5. Write lagrange's formula.

Derivations of Newton's forward formula.

6 marks:

1. Find the missing y_x values in the table

y_x	0	_	_	_	_	_
Δy_x	0	1	2	4	7	11

2. Find u_6 , given that

u_0	u_1	u_2	u_3	u_4	u_5
25	25	22	18	15	15

3. Find the missing term from the following data.

Х	0	5	10	15	20	25
Y	7	11	14	-	24	32

4. Find the missing terms in the following table:

Х	1	2	3	4	5	6	7
Y	2	4	8	_	32	64	128

- 5. Define $\Delta[f(x)]$. If h=1, prove that $\Delta(\sin x)=2 \sin 1/2 \cos [x+1/2]$.
- 6. Find the suitable interpolation formula the values of f(2.5) from the following data.

X	2	3	4	5
Y	14.5	16.3	17.5	18

7. Using Newton's forward interpolation formula obtain y when x=2.5 from the following table.

X	0	1	2	3	4
Y	7	10	13	22	43

8. Give the table,

X	0	0.1	0.2	0.3	0.4
e^x	1	1.1052	1.2214	1.3499	1.4918

- 9. Given the tabulated points (1,-3), (3,9), (4,30), (6,132), obtain the values of y when x=2 using Largrange's interpolation formula.
- 10.Using Newton's forward interpolation formula, find the population for the year 1946given

X (year)	1941	1951	1961	1971	1981
Y (popolation	46	66	81	93	101
in thousands)					

11. Given the following values for x and y

X	0	1	2	3	4	5
Y	3	12	81	200	100	8

Find $\Delta^{\mathfrak{s}} y_0$.

12.Given

Х	40	50	60	70	80	90
Y	184	204	226	250	276	304

Find y, when x=43, using Newton's forward difference formula.

13. Using Newton's interpolation formula, find U_{B} given

 $U_7 = 351, U_8 = 739, U_{11} = 1343, U_{13} = 2211$

14. Derivation for finding polynomial function.

10 marks:

1. Apply Newton's backward difference formula to find a polynomial of degree 3. Using the table given below.

X	3	4	5	6
Y	6	24	60	120

2. Use Newton's formula to find y when x=142, given that

X	140	150	160	170	180
Y	3.685	4.854	6.302	8.076	10.225

3. It is given that

Х	40	50	60	70	80
Y	3.7	4.9	6.3	8	10.2

Find the value of y corresponding to x=45, suing Newton's formula.

4. Find the value of y when x=8 from the following data:

X	0	5	10	15	20	25
у	7	11	14	18	24	32

5. Using Newton's formula, find the value of y when x=27, from the following data:

X	10	15	20	25	30
Y	35.4	32.2	29.1	26.0	23.1

6. Using Lagrange's formula, find log_{10} 301 from the following table when x and log_{10} x values are given by

X	300	304	305	307
---	-----	-----	-----	-----

$log_{10}x$	2.4771	2.4829	2.4843	2.4871

7. Use Lagrange's formula to find y when x=2, given

X	0	3	5	6	8
Y	276	460	414	343	110

8. Use Lagrange's formula to find y when x=102, given

X	93.0	96.2	100	104.2	108.7
Y	11.38	12.80	14.7	17.07	19.91

9. Using Newton's formulae, calculate the values of $e^{1.85}$ and $e^{2.05}$ given:

X	1.7	1.8	1.9	2.0	2.1
e^x	5.474	6.050	6.686	7.389	8.166

10.Using Newton's forward formula, find the vales of y when x=21 from the following,

X	20	30	40	50
Y	0.34	0.39	0.44	0.48

11.A function f(x) is given by the following table. Find f(0.2) by using Newton's forward interpolation formula,

Х	0	1	2	3	4	5	6
F(x)	176	185	194	203	212	220	229

12.Using Lagrange's formula, find log_{10} 401 from the following table where x, log_{10} x values are given:

Х	400	404	405	407
log ₁₀ x	2.6022	2.6064	2.6075	2.6096

13.For a polynomial to the following date and hence find y(10) using Lagrange's interpolation formula

X	5	6	9	11
Y	12	13	14	16

14.Using the following table, find y when x=0.25, using Newton's backward formula

X	0.1	0.2	0.3	0.4	0.5
F(x)	0.11	0.22	0.33	0.43	0.52

15.Using Newton's backward formula, find (27.5) given

X	25	26	27	28
F(x)	16.195	15.919	15.630	15.326

16.Using Newton's backward formula, find f(1.9) given

X	1.00	1.25	1.50	1.75	2.00
F(x)	0.3679	0.2865	0.2231	0.1738	0.1353

17. The following table gives the values of x and $y = \sqrt{x}$

X	1.00	1.05	1.10	1.15	1.20	1.25
Y	1.00	1.0247	1.04881	1.07238	1.09544	1.11803