St. Joseph's College of Arts and Science, Cuddalore.

Question Bank

PG Research Department of Mathematics

Class: I B.Sc Mathematics

Subject Name: Calculus

Subject Code: MT203S

Staff Name: Dr. S. Anjal Mose

Calculus - 1st year, Semester II

Unit-1

2 MARKS

- 1. If $x = r\cos\theta$: $y = r\sin\theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$.
- 2. If u is the function of three independent variable x,y and z then write down the total differential of u.
- 3. If $xy = c^2 find \frac{dy}{dx}$.
- 4. If u= x+y; v= x-y find $\frac{\partial(x,y)}{\partial(u,v)}$.
- 5. State Leibnitz's Theorem.
- 6. If $y = sin(msin^{-1}(x))$ Show that $(1-x^2)y_2 xy_1 + m^2y = 0$.
- 7. Define saddle point.
- 8. Find the Liebnitz formula for the nth derivative of a product of two functions u and v.

5 MARKS

- 1. Find $\frac{du}{dt}$ where $u = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t$ sint and $z = e^t$ cost.
- 2. If x = rcos θ : y = rsin θ then prove $\frac{\partial(x,y)}{\partial(r,\theta)} \frac{\partial(r,\theta)}{\partial(x,y)} = 1$.
- 3. Find the minimum value of $x^2 + y^2 + z^2$ where ax + by + cz = p.
- 4. If z=f(x,y) where $x = r\cos\theta$ and $y = r\sin\theta$ show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$$

- 5. Find the nth derivative of e^{nx}cos²x sinx.
- 6. Find yn, where $y = \frac{3}{(x+1)(2x-1)}$.

10 MARKS

- 1. If $x = rsin\theta cos\phi$, $y = rsin\theta sin\phi$ and $z = rcos\theta$ prove $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} = r^2 sin\theta$.
- 2. If u = x + y + z, uv = y + z, uvw = z find $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2 v$
- 3. Find the maximum or minimum values of $f(x,y) = 2[x^2 y^2] x^4 + y^4$.
- A rectangular box without a lid is to be made form12m² of cardboard. Find the volume of such a box.
- 5. Find the maxima and minima of $f(x,y) = x^3 + y^3 3axy$.
- 6. If $y = (x + \sqrt{1 + x^2})^2$ Prove that $(1+x_2)Y_{n+2} + (2n+1)xy_{n+1} + (n^2-m^2)y_n = 0.$
- 7. If $x=v^2+w^2$, $y=w^2+u^2$, $z=u^2+v^2$ show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} \cdot \frac{\partial(u,v,w)}{\partial(x,y,z)} = 1$.

8. Find
$$y_n$$
 when $y = \frac{x^2}{(x-1)^2(x+2)^2}$

9. Discusss the maxima and minima of the function $x^3y^2(6-x-y)$.

UNIT 2

- 1. Write the Cartesian formula for radius of curvature.
- Find the radius of curvature of curve y = e^x at the point where it crosses the y-axis.
- 3. Write the formulae for the radius of curvature for polar coordinates and for pedal curve.
- 4. Define chord of curvature.
- 5. Define radius of curvature`

6. Write the formula for radius of curvature in polar form.

5 marks

- Find the curvature at any point of the curve x=ae(sinθ cosθ), y=aeθ(sinθ +cosθ).
- 2. Find the (p-r) equation for the curve rsin θ + a = 0.
- 3. Find the radius of curvature for the curve xy=30 at the point (3, 10).
- 4. Find the shape of the straight line $\frac{1}{r} = \cos(\theta \alpha) + \cos\theta$.
- 5. What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1,1).

10 marks

- 1. Show that the ROC of the curve $y^2 = \frac{a^2(a-x)}{x}$ at (a,0) is $\frac{1}{2}a$.
- 2. Show that in the parabola y^2 =4ax at the point t, $\rho = -2a(1+t^2)^{3/2}$; Find the
- 3. Find the radius of curvature of $y^2 = a^3 x^3 / x$ at (a,0).
- 4. Derive the formula for radius of curvature in polar coordinates.
- 5. Find ' ρ ' at the point t of the curve x=a(cost +tsint), y=a(sint-tcost).
- 6. Prove that the (p-r) equation of the cardioid $r=a(1 \cos\theta)$ is $p^2 = r^2/2a$
- 7. Find the pedal equation for the curves i) $r=a(1-\cos\theta)$ ii) $\frac{1}{r}=1+\cos\theta$.
- 8. Find the radius of curvature of the centroid $r = a(1+\cos\theta)$ at the point (r,θ) .
- 9. Show that the radius of curvature of the curve

 $r^n = a^n \cos \theta$ is $a^n r^{-n+1}/n+1$.

10. Find the p-r equation of r=asin**0**.

- Find the radius of curvature at any point 'θ' on the curve x=a(θ+sinθ), y=a(1-cosθ).
- 12. Find the radius of curvature at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ to the curve $x^2 + y^2 = 3axy$.

UNIT 3

2 marks

- 1. Find the p-r equation of r=asin**0**
- 2. Define Envelope of a curve.
- 3. Define evolute.
- 4. Find the reduction formula for $I_n = \int x^n e^{ax} dx$.
- 5. Define the envelope of the family.
- 6. What is an asymptote?
- 7. Find the envelope of the family of straight lines $x\cos\alpha + y\sin\alpha = p$, being the parameter.

5 marks

- 1. Find the envelope of the family of straight line $y = mx + \frac{a}{m}$, the parameter being t.
- 2. Find the envelope of the family of the curves $(x-\alpha)^2 + y^2 = 4\alpha$, where α is a parameter.
- 3. Fine the envelope of the family of circles $(x-a)^2 + y^2 = 2a$, where a is the parameter.
- 4. Find all the asymptotes of $(x^2/a^2)-(y^2/b^2) = 1$.
- 5. Find the envelope of $y = mx + \sqrt{a^2m^2 + b^2}$ where 'm' is a parameter.
- 6. Find the asymptotes of $x^3+2x^3y-4xy^2-8y^3-4x+8y = 1$.

- 1. Find the asymptotes of the curve, $x^3+3x^2y-xy^2-3y^3+x^2-2xy+3y^2+4x+7 = 0$.
- 2. Find the evolute of the rectangle hyperbola $xy = c^2$.
- 3. Find the evolute of the ellipse $(x^2/a^2) + (y^2/b^2)=1$.
- 4. Find the rectilinear asymptotes of $2x^4-5x^2y^2+3y^4+4x^3-6y^3+x^2+y^2-2xy+1 = 0$.

- 5. Find the asymptotes of $x^3+2x^2y-xy^2-2y^3+4y^2+2xy+y+1 = 0$.
- Show that the evolute of the cycloid x=a(θ-sinθ), y=a(1-cosθ) is another cycloid.
- 7. Find the evolutes of asymptotes of the curve $y^3-x^2y-2xy^2+2x^3-7xy+3y^2+2x^2+2x+2y+1 = 0$.
- 8. Find the envelope of the ellipses having the axes of coordinates as principal axes and sum of their semi axes constant.
- Find the envelope of x/a + y/b =1 subject to aⁿ+bⁿ=cⁿ given C is a known constant.
- 10. Find the asymptotes of the cubic curve $y^3-6xy^2+11x^2y-6x^3+x+y=0$.

UNIT 4

2 marks

- 1. Evaluate $\int_0^1 x7(1-x)^8 dx$ Using Gamma Beta function.
- 2. Define Gamma function.
- 3. Write down the I_n for $\int x^n e^{ax}$ using reduction formula.
- 4. Evaluate $\int x^2 e^{-2x} dx$.
- 5. Define Beta function.
- 6. Show that (n+1) = n(n) = n!
- 7. Prove that $\Gamma 1 = 1$.

5 marks

1.Evaluate $\int_0^{\pi/2} \sin^m x \cos^n x dx$

- 2. Establish a reduction formula for $\int \sin^n x dx$.
- 3. Evaluate $\int_0^{\pi/2} x(1-x^2)^{1/2} dx$
- 4. Find the reduction formula for $\int \cot^n x dx$ with limits $\pi/4$ to $\pi/2$.
- 5. Establish a reduction formula for $\int \cos^n x dx$.

6. Prove that
$$\Gamma_{\frac{1}{2}} = \sqrt{\pi}$$
.

7. Evaluate $\int \sec^3 x dx$.

10 marks

1. Establish the relation between beta and gamma function.

- 2. Prove that (m,n) = $\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
- 3.Evaluate $\int_0^{\pi/2} e^{-x^2} dx$.

4. Derive reduction formula for $I_{m,n} = \int x^m (\log x)^n dx$; m,n>0 and hence deduce $\int x^4 (\log x)^3 dx$. 5. Prove that $\Gamma(n+\frac{1}{2}) = \frac{\sqrt{\pi}}{2n} (2n-1)!$ 6. If $I_n = \int_0^{\pi/2} x\cos^n x dx$ where n>1 show that $I_n = (-1/n^2) + ((n-1)/n)I_{n-2}$ Find

 I_4

- 7. Find the reduction formula for $\int_0^{\pi/2} \sin^n x dx$ and hence evaluate $\int_0^{\pi/2} \sin^8 x dx$
- 8. If $I_n = \int_0^1 x^p (1-x^q)^n dx$ where p,q>0 and n is a positive integer, Prove that $(p+qn+1)I_n = nqI_{n-1}$ and hence evaluate I_3

UNIT 5

2 marks

- 1. Evoluate $\int_0^1 \int_0^2 (x^2+y^2) dy dx$ 2. Evoluate $\int_0^1 \int_0^1 dx dy$
- 3. How we can express the co-ordinates of the centre of gravity.
- 4. Prove that $(m,n) = \boldsymbol{\beta}(n,m)$.
- 5. Evaluate $\int_0^h \int_0^h xy \, dx \, dy$

- 1. Find the volume of a sphere of radius 'a' by triple integral.
- 2. Evoluate $\iint xy dx dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- 3. Find the area enclosed by the ellipse $(x^2/a^2) + (y^2+b^2) = 1$.
- 4. Evaluate $\int_0^1 (x \log x)^4 dx$
- 5. Evaluate $\int_0^{\pi/2} \int_0^{a\cos\theta} r\sqrt{a^2-r^2} dr d\theta$ 6. Evaluate $\int_0^a \int_0^{\sqrt{ay}} xy dy dx$

- 1. Find the area of the ellipse $x^2+4y^2-6x+8y+9 = 0$.
- 2. Find the volume of the tetrahedrom bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes.
- 3. Evaluate $\iint f$ xyz dxdydz taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$
- 4. Evaluate $\int_0^1 \quad \int_0^1 \quad \int_0^1 \quad (x+y+z) dx dy dz$

- 5. Find the area common to $y^2 = 4ax$, $x^2 = 4ay$ 6. Evaluate $\int_0^{log_2} \int_0^x \int_0^{x+log_y} e^{x+y+z} dz dy dx$ 7. Evaluate $\int_0^4 \int_0^x \int_0^{\sqrt{x}+y} z dz dy dx$ 8. Evaluate $\int_{-a}^{a} \int_0^{\sqrt{a2}-y^2} x dx dy$ change the order of integration.
- 9. Evaluate $\int_0^\infty = \int_x^\infty \frac{e^{-y}}{v} dy dx$ change the order of integration.