# **Department of Mathematics**

# **QUESTION BANK**

**Class: III B.Sc Mathematics** 

Sub Name: REAL ANALYSIS-II

Sub Code: MT615

## Staff Name: Mrs.C.Devi Shyamala mary

# UNIT-I

#### <u>2-Marks</u>

- 1. Define a subset A of M is bounded.
- 2. Define a subset A of M is totally bounded.
- 3. Give an example of a set which is bounded but not totally bounded.
- 4. Define connected set.
- 5. Given an example for a subset of  $R^1$  which is not connected.
- 6. Define connected set with example.
- 7. Give an example of connected set in  $R^1$ .
- 8. A=[0,1]U[2,3]. Is the set is connected. Give the reason to your answer.

### 5-Marks

- 1. If  $A_1$  and  $A_2$  are connected subsets of a metric space M, and if  $A_1 \cap A_2 \neq \phi$  then show that  $A_1 \cup A_2$  is also connected.
- 2. Let f be a continuous function from a metric space  $M_1$  into a metric space  $M_2$ . If  $M_1$  is connected, then prove that the range of f is also connected.
- 3. Prove that the interval [0,1] is not a connected subset of  $R_d$ .
- 4. Prove that the subset A of *R*′ is connected iff whenever a∈ *A*,b∈ *A* with a<b, then c∈ *A* for any c such that a<c<b.

#### <u> 10-Marks</u>

1. Prove that the subset A of R' is connected if and only if whenever  $a \in A$ ,  $b \in A$  with a < b then  $c \in A$  for any c such that a < c < b.

2. If the subset A of the metric space  $\langle M, \rho \rangle$  is totally bounded, then prove that A is bounded.

- 3. Let M be a metric space .Prove that the subset A of M is totally bounded if and only if every sequence of points of A contains a Cauchy subsequence.
- 4. Let M be a metric space and let A be a subset of M. Then if A has either one of the following properties it has the other.

i)It is impossible to find non-empty subsets  $A_1$ ,  $A_2$  of M such that  $A=A_1 \cup A_2$ ,  $\overline{A_1} \cap A_2 = \emptyset$  and

 $A_1 \cap \overline{A_2} = \emptyset.$ 

ii) When  $\langle A, \rho \rangle$  it itself regarded as a metric space, then there is no set except A and  $\emptyset$  which is both open and closed in  $\langle A, \rho \rangle$ .

## UNIT-II

#### 2-Marks

- 1. Define complete metric space with example.
- 2. Define contraction map on a metric space  $\langle M, \rho \rangle$ .
- 3. State the Picard fixed-point theorem.
- 4. State finite intersection property.
- 5. Define a compact metric space and give an example of a space which is not compact.
- 6. Define inverse image.
- 7. Define continuous at a point p.

### <u>5-Marks</u>

- 1. State and prove generalization of the nested interval theorem in a complete metric space.
- 2. Show that a closed subset of a complete metric space is complete.
- 3. If A is a closed subset of the compact metric space  $\langle M, \rho \rangle$ , then the metric space  $\langle A, \rho \rangle$  is also compact.
- 4. Show that a closed subset of a compact metric space is compact.
- 5. Let  $\langle M, \rho \rangle$  be a complex metric space for each  $n \in I$ , let  $F_n$  be a closed bounded subset of M such that i,  $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq F_{n+1} \supseteq \cdots$  and ii) diam  $F_n \to 0$  as  $n \to \infty$ , then show that  $\prod_{n=1}^{\infty} F_n$  contains precisely one point.
- 6. Prove that if the real-valued function f is continuous on the compact metric space M, then f attains a maximum value at some point of M. Also, f attains a minimum value at some point of M.
- 7. If the real-valued function f is continuous on the closed bounded interval [a,b]then prove that attains a maximum and a minimum value at points of [a, b].

#### <u> 10-Marks</u>

- 1. Prove that, the metric space <M ,p> is compact if and only if every sequence of points in M has a subsequence converging to a point in M.
- 2. Prove that a contraction f of a complete metric space S has a unique fixed point p.
- 3. State and prove Picard's fixed point theorem.
- 4. If the metric space M has the Heine-Borel property then prove that M is compact.
- 5. Let  $\langle M, \rho \rangle$  be a complete metric space. If *T* is a contraction on *M*, then show that there is one and only one point *x* in *M* such that Tx = x.

6. If M is a compact metric space, then M has the Heine-Borel property.

# UNIT-III

#### <u>2-Marks</u>

1. If each of the subsets E1 ,E2,... of R<sup>1</sup> is of measure ,then  $\overset{\,\,{}_\circ}{Y}$  En is also of measure Zero.

2. If  $f \in [a, b]$ ,  $g \in \mathbb{R}[a, b]$  and if  $f(x) \le g(x)$  almost everywhere  $(a \le x \le b)$ , then  $\int_{a}^{b} f \le \int_{a}^{b} g$ .

3. Define derivatives.

4. Define the Riemann integrable on[a,b].

5. State the Rolle's Theorem.

6.

7.

subdivision  $\left\{ 0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n} \right\}$  of [0,1].compute lim U[f;  $\sigma_n$ ] as  $n \to \infty$ 

Show that the function f

For each  $n \in I$  let  $\sigma_n$  be the

Prove that every countable subset

of  $R^1$  has measure zero.

 $(x) = x^2$  is derivable on [0,1].

9.

8.

What is mean by measure zero.

10. Find a suitable point of c of Rolle's theorem for f(x)=(x-a)(x-b),  $(a \le x \le b)$ .

#### 5-Marks

1. Let D be a bounded function on [a,b]. Then every upper sum for j is greater than or equal to every lower sum for f. That is, if  $\sigma$  and  $\tau$  are any two subdivisions of [a,b], then

$$U[f;\sigma] \ge L[f;\tau].$$
2.  
3. Prove that if  $f \in [a,b]$  and  $a < c < b$ , then  $f \in [a,c], f \in [c,d]$  and  $\underline{\int_a^b f} = \underline{\int_a^c f} + \underline{\int_c^b f}.$ 

4. If  $f \in R[a, b], g \in R[a, b]$ , then show that  $f + g \in R[a, b]$  and  $\underline{\int_a^b (f + g)} = \underline{\int_a^b f} + \underline{\int_a^b g}$ .

5. Prove that if,  $f \in [a, b]$  and  $\lambda$  is any real number, then and  $\underline{\int_a^b \lambda f} = \lambda \int_a^b f$ .

- 6. If the real-valued function f has a derivative at the point  $c \in \mathbb{R}^1$ , then prove that f is continuous at *c*.
- 7. If f has a derivative at every point of [a,b], then show that f' takes on every value between f'(a) and f'(b).
- 8. State and prove Rolle's theorem.
- 9. Let f be continuous real valued function on the closed bounded interval [a,b]. If the maximum value for f is attained at c where a < c < b, and if f'(c) exists, then f'(c)=0.

# <u>10-Marks</u>

- 1. Let f be a bounded function on [a, d], then  $f \in [a, b]$  if and only if for each  $\epsilon > 0$  there exists a subdivision  $\sigma$  of [a, b] such that  $U[f; \sigma] < L[f; \sigma] + \epsilon$ .
- 2. If  $f \in R[a, b], g \in R[a, b]$ , then show that  $f + g \in R[a, b]$  and  $\underline{\int_a^b (f + g)} = \underline{\int_a^b f} + \underline{\int_a^b g}$ . 3. Prove that, if  $f \in [a, b]$  and a < c < b, then  $f \in [a, c], f \in [c, d]$  and  $\underline{\int_a^b f} = \underline{\int_a^c f} + \underline{\int_c^b f}$ .
- 4. Prove that if  $f \in [a, b]$  and  $\lambda$  is any real number, then and  $\int_a^b \lambda f = \lambda \int_a^b f$ .
- 5. If f be a 1-1 real valued function on an interval J.Let  $\varphi$  be the inverse function for f. If f is continuous at  $c \in J$ , and if  $\varphi$  has a derivative at d=f(c) with  $\varphi'(d) \neq 0$ , then show that
- f'(c) exists and  $\underline{f'(c)} = \frac{1}{\varphi'(d)}$ .
- 6. State and prove the Rolle's Theorem.
- 7. Suppose f has a derivative at c and g has a derivative at f(c).then  $\varphi = g$ . f has a derivative at c and  $\varphi'(c) = g'[f(c)]f'(c)$ .

### **UNIT-IV**

### <u>2-Marks</u>

- 1. State the Law of the Mean.
- 2. Prove that the improper integral  $\int_{1}^{\infty} \frac{1}{x} dx$  is diverges.
- 3. Define Cauchy principle value.
- 4. Examine the convergence of  $\int_0^1 \frac{1}{x^2} dx$ .
- 5. If f(x)=0 for every x in the closed bounded interval [a, b] then f is constant on [a, b].
- 6. State the important application of the law of mean.
- 7. If f'(x) = g'(x) for all x in the closed bounded interval [a,b] then f-g is constant(ie)  $f(x)=g(x)+c \ (a \le x \le b)$  for some  $c \in \mathbb{R}$ .

## <u>5-Marks</u>

- 1. Prove that if f'(x) = 0 for every x in the closed bounded interval [a,b], then f is constant on [a,b], i.e., f(x) = C ( $a \le x \le b$ ) form some  $C \in R$ .
- 2. State and prove the Law of the Mean.
- 3. Let f and g be continuous function on the closed bounded interval [a,b] with  $g(a) \neq g(b)$ . If both f and g have a derivative at each point of (a,b), and f'(t)&g'(t) are not both equal to zero for any  $t \in (a, b)$ , then prove that there exist a point  $C \in (a, b)$  such that

 $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$ 

4. Prove that the improper integral  $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$  is divergent.

- 5. State and Prove the First fundamental theorem of calculus.
- 6. If f is continuous function on the closed bounded interval [a, b], and

if  $\varphi'(x) = f(x)(a \le x \le b)$ , then  $\int_a^b f(x)dx = \varphi(b) - \varphi(a)$ .

## <u>10-Marks</u>

- 1. State and prove the second fundamental theorem of calculus.
- 2. Prove that the improper integral  $\int_0^1 \frac{1}{x} dx$  diverges.
- 3. Prove that improper integrals  $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$  converges.
- 4. State and prove first mean value theorem.
- 5. If  $f \in [a, b]$ , if  $F(x) = \int_a^x f(t)dt$   $(a \le x \le b)$ , and if f is continuous at  $x_0 \in [a, b]$ , then prove that  $F'(x) = f(x_0)$ .
- 6. If f is continuous real valued function on the interval J and if f'(x) > 0 for all x in J except possibly the end points of J, then prove that f is strictly increasing on J.

### **UNIT-V**

#### <u>2-Marks</u>

- 1. State the Taylor's formula with the integral form of remainder.
- 2. Evaluate  $\lim_{x \to \infty} \left[ \frac{\log x}{x} \right]$  as  $x \to \infty$ .
- 3. State Bionomial theorem.

- 4. State Binomial series.
- 5. Write the Taylor's expansion of a function f(x) at x=a.

6. Evaluate  $\lim_{x\to 0^+} \left[ \frac{\tan x - x}{x - \sin x} \right]$ . 7. Find  $\lim_{x\to 0} \frac{\sin x}{x\cos + 2\sin x}$ 

- 8. Write Taylor's series about x=a.
- 9. Sate the theorem whichestablish Taylor's formula with the Cauchy form of the remainder.

## 5-Marks

1. Evaluate  $\lim_{x \to a} \frac{\tan x - x}{x - \sin x}$ .

- 2. State and prove the Taylor's formula with the Lagrange form of the remainder.
- 3. Let f be real valued function on the interval [a, a+h] such that  $f^{(n+1)}(x)$  exists for everyx $\in$  [ a, a+h] and  $f^{(n+1)}$  is continuous on [a, a+h]. Let  $R_{k+1}(x) = \frac{1}{k!} \int_{a}^{x} (x-t)^{k} f^{(k+1)}(t) dt$

 $(x \in [a, a+h]; k = 0,1,...n)$ , then prove that  $R_k(x) - R_{(k+1)}(x) = \frac{f^{(k)}(a)}{k!} (x - a)^k (x \in [a, a+h]; x = 0,1,...n)$ 

$$k=1,2,...n)$$
.

- 4. If  $f(x) = e^x$  then  $f^{(n)}(x) = e^x$  with n=2 and  $e^{0.1} \approx 1.105$  prove that  $e^{0.1} < 0.0002$ .
- 5. Evaluate  $\lim_{x\to 0} \frac{x-tanx}{x^3}$  by using L` Hospital rule.
- 6. Let  $\emptyset$  be a continuous function on the closed bounded interval (a,b), and let g be a continuous function on (a,b) such that  $g(t) \ge 0$ ,  $(a \le t \le b)$ . Then prove that there exists a number c with  $a \le c \le b$ such that  $\int_{a}^{b} \phi(t) g(t) dt = \phi(c) \int_{a}^{b} g(t) dt$ .

#### <u>10-Marks</u>

- 1. State and prove Taylor's formula with the Lagrange form of remainder.
- 2. Show that the number  $\theta$  which occurs in the Taylor's theorem with Lagrange's form of remainder after *n* times approaches the limit  $\frac{1}{(n+1)}$  as h approaches zero provided that

 $f^{n+1}(x)$  is continuous and different from at x=a.

- 3. State and prove Taylor's theorem
- 4. State and prove the binomial theorem.
- 5. Find the series expansion of f(x) = cosx by Maclaurin's theorem.
- 6. Let f be a real valued function on [a, a+h] such that  $f^{(n+1)}$  is continuous on [a, a+h] then prove

that 
$$f(x) = f(a) + \left(\frac{f'(a)}{1!}\right)(x-a) + \left(\frac{f''(a)}{2!}\right)(x-a)^2 + \dots + \left(\frac{f^{(n)}(a)}{n!}\right)(x-a)^n + R_{n+1}(x),$$
  
where  $\underline{R_{n+1}(x)} = \frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt.$ 

7. If  $m \in R$  is not a negative integer, then

$$(1+x)^m = 1 + \frac{m}{m}x + \frac{m(m-1)}{m}x^2 + \dots + \frac{m(m-1)(m-2)\dots(m-n+1)}{m}x^n + \dots$$
, Provides that  $|x| < 1$ .

