1 Measure Theory

St. Joseph's College of Arts and Science, Cuddalore.

Question Bank

PG & Research Department of Mathematics

Class: I M.Sc Mathematics

Subject Name: Measure Theory

Subject Code: PMT807

Staff Name: Mr. A. Virgin

II Semester question bank

UNIT - I

- 1. Prove that the interval (a, ∞) is measurable.
- 2. Define an outer measure. Prove that the outer measure of an interval is its length.
- 3. (i) State and prove Little Wood's first principle.
 - (ii) Let E be a given set. Then prove that the following 5 statements are equivalent:i) E is measurable.
 - ii) Given $\mathcal{C}>0,\exists$ an open set $O\supset E$ with $m^*(OE) < \mathcal{C}$.
 - iii) Given $\mathfrak{C}>0,\exists$ a closed set $F \subset \mathbb{E}$ with $m^*(\mathbb{E}F) < \mathfrak{C}$
 - iv) There is a G in G_{δ} with $E \subset G, m^*(GE)=0$
 - v) There is a F in F_{σ} with $F \subset E, m^*(EF) = 0$
- Prove: Let E be a measurable set of finite measure, and <f_n> a sequence of measurable functions defined on E. Let f be a real valued function such that for each x € E we have f_n(x) → f(x). Then given € > 0 and δ>0, there is a measure set ACE with mE< δ and an integer N such that for all x€A and all n ≥ N, |f_n(x) f(x)| < €.
- (i) If <E_n> is an finite decreasing sequence of measurable sets with E_{n+1} ⊂ E_n for each n and mE₁ < ∞ then prove that m(∩_{i=1}[∞] E_i) = lim_{n→∞} mE_n
- 6. State Littlewood's three principles. State and prove Egoroff's theorem.
- 7. Construct a non measurable set.
- 8. Prove that the collection M of measurable sets is $a\sigma$ algebra.

Unit – II

2 Measure Theory

- 1. State and prove Fatou's lemma.
- 2. State and prove the Bounded Convergence theorem
- 3. State and prove Monotone convergence theorem
- 4. Lebesgue convergence theorem
- 5. If f is a non negative function which is integrable over a set E then prove that for given $\mathcal{E} > 0$ there is a $\delta > 0$ such that for every set $A \subset E$ with $mA < \delta$ we have $\int_A f < \mathcal{E}$

If f is a nonnegative function which is integrable over a set E, then prove that for given $\mathcal{C}>0$ there is a $\delta>0$ such that for every set $A\subset E$ with mA< δ we have $\int_A f < \mathcal{C}$

Let f be a non negative function which is integrable over a set E. Then given $\mathcal{C} > 0$ there is a $\delta > 0$ such that for every set $A \subset E$ with mA $<\delta$, we have $\int_A f < \mathcal{C}$. Prove.

- 6. If f and g are bounded measurable functions defined on a set E of finite measure, then prove that $\int_{E} af + bf = a \int_{E} f + b \int_{E} g$ and if f=g a.e then $\int_{E} f = \int_{E} g$
- 7. State and prove the necessary and sufficient condition that f be measurable. State and prove the necessary and sufficient condition that f be measurable.
- 8. Define the convergence in measure. If $\langle f_n \rangle$ is a sequence of measurable functions that converges in measure to f, prove that there is a subsequence $\langle f_{nk} \rangle$ that converges to f almost everywhere.
- 9. Let f be defined and bounded on a measurable set E with mE finite. In order that $\int_{f \le \psi} \int_{E} \psi(x) dx = \int_{f \ge \varphi} \int_{E} \varphi(x) dx \text{ for all simple functions } \varphi and\psi, \text{ it is necessary and}$ sufficient that f be measurable. Prove.

Unit – III

- 1. Prove that a function f is of bounded variation on [a,b] iff f is the difference of two monotone real-valued functions on [a,b].
- 2. State and prove Vitali's Lemma.
- 3. If f is a absolutely continuous on [a,b] and f'(x) = 0 almost everywhere then prove that f is constant.
- 4. State and prove Jensen Inequality.
- 5. If f is bounded and measurable on [a,b] and $F(x) = \int_{a}^{x} f(t)dt + F(a)$ then prove that F'(x) = f(x) for almost all x is [a,b]
- 6. Let f be an increasing real-valued function on [a,b]. Prove that f is differentiable almost everywhere, the derivative is measurable and $\int_a^b f(x) dx \le f(b) f(a)$.
- 7. If f is integrable on [a,b] and $\int_{a}^{b} f(t)dt = f$ for all x [a,b]. Prove that f(t)=0 almost everywhere in [a,b].
- 8. A function F is an indefinite integral if and only if it is absolutely continuous. Prove.
- 9. If f is absolutely continuous on [a,b] and a.e., prove that f is constant

Unit – IV

1. State and prove Hahn Decomposition Theorem.

3 Measure Theory

- 2. State and prove Lebesgue Convergence Theorem on general measure.
- 3. State and prove Radon-Nikodym theorem.
- 4. Let (x, \mathcal{B}) be a measurable space, $\langle \mu_n \rangle$ a sequence of measures that converge setwise to a measure μ and $\langle f_n \rangle$ a sequence of non-negative measurable functions that converge point-wise to the set function f. Prove that $\int f d\mu \leq \underline{\lim} \int f_n d\mu_n$
- 5. If for each α in a dense set D of real numbers there is assigned a set $B_{\alpha} \in \mathcal{B}$ such that $B_{\alpha} \subset B_{\beta}$ for, then prove that there is a unique measurable extended real-valued function f on X such that $f \leq \alpha on B_{\alpha} and f \geq \alpha on X \sim B_{\alpha}$
- 6. If for each α in a dense set D of real numbers there is assigned a set $B_{\alpha} \in \mathcal{B}$ such that $\mu(B_{\alpha} \sim B_{\beta}) = 0$ for $\alpha < \beta$, then prove that there is ameasurable function f such that $f \leq \alpha$ almost everywhere on B_{α} and $f \geq \alpha$ almost everywhere on $X \sim B_{\alpha}$ Also prove the uniqueness.
- 7. If E is a measurable set such that $0 < \gamma E < \infty$ then prove that there is a positive set A contained in E with $\gamma A > 0$
- 8. If $E_i \in \mathcal{B}$, $\mu E_1 < \infty$ and $E_i \supset E_{i+1}$, prove that $\mu(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu E_n$

Unit – V

- 1. State and prove caratheodory theorem.
- 2. Prove that the class \mathcal{B} of μ^* measurable sets is $a\sigma$ -algebra. If is $\overline{\mu}is\mu^*$ restricted to \mathcal{B} , then $\overline{\mu}is$ a complete measure on \mathcal{B}
- 3. Prove that the class \mathcal{B} of μ^* measurable sets is a α -algebra.
- 4. If E is a set in R_{σδ} with μ_xγ(E) < ∞, then prove that the function defined by is a measurable function of x and g(x)= γE_x is a measurable function of x and ∫ gdμ = μ_xγ(E)
- 5. If x is a point of X and E a set in $\mathcal{R}_{\sigma\delta}$, then prove that E_x is a measurable subset of Y.
- 6. If AC $\boldsymbol{\mathcal{R}}$, then prove that A is measurable with respect to μ^*
- 7. If $\{(A_i X B_i)\}$ is a countable disjoint collection of measurable rectangles whose union is a measurable rectangle AXB, then prove that $\lambda(AXB)=\Sigma\lambda(A_i X B_i)$.
- 8. State and prove Fubini's Theorem.
- 9. State and prove Tonelli theorem.
- 10. Let μ be a measure on an algebra and μ^* be the outer measurable induced by μ . Let E be any set. Prove that for C>0, there is a set $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^*A \leq \mu^*E + C$. There is also a set $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*E = \mu^*B$
- 11. Let μ be a measure on an algebra A and μ^* be the outer measure induced by μ . Let E be any set. Prove that for $\mathcal{C}>0$, there is a set $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^*A \leq \mu^*E + \mathcal{C}$. There is also a set $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*E = \mu^*B$.