ST. JOSEPH'S COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

CUDDALORE – 1

PG & RESEARCH DEPARTMENT OF PHYSICS

B.Sc Physics Syllabus (2020-2021)

Sem	Part	Subject Code	Subject Title	Hrs	Cr
	1	LT101T	Tamil- I/Hindi-I/French-I	4	3
	11	LE101T	Functional English-I	4	3
		19PH101	Core Paper – I: Properties of matter	4	3
	- 111	19PH102	Core Paper – II: Mechanics	4	3
I.	- 111	PHP101	Core Practical – I	3	2
	- 111	AMT101Q	Allied Mathematics-I	6	4
	IV	20PEPS02	ProfessionalEnglish	3	3
	IV	VE101T	SEC- Value education	2	2
			Total	30	23
	1	LT202T	Tamil -II/Hindi-II/French-II	4	3
	11	LE202T	Functional English-II	4	3
	- 111	19PH203	Core Paper – III : Thermal Physics	4	3
	- 111	19PH204	Core Paper – IV: Waves and Oscillations	4	3
н	- 111	PHP202	Core Practical – II	3	2
		AMT202T	Allied Mathematics-II	6	4
	IV	20PEPS02	ProfessionalEnglish	3	3
		EPD201T	SEC- Dynamics of personality	2	2
			Total	30	23
	I	LT303T	Tamil -III/Hindi-III/French-III	4	3
	Ш	LE303T	English-III	4	3
		19PH305	Core Paper – V: Electricity and Magnetism	4	3
		19PH306	Core Paper – VI: Basic Electronics	4	3
ш		PHP303	Core Practical – III	3	2
	IV	ACH301S	Allied Chemistry	5	3
		ACHP301	Allied Chemistry Practical	3	2
	IV	EVS301S	SEC-Skill based course – Environmental Science	3	2
			Total	30	21
	I	LT404T	Tamil -IV/Hindi-IV/French-IV	4	3
	П	LE404T	English-IV	4	3
	- 111	19PH407	Core Paper – VII: Atomic Physics	4	3
	- 111	19PH408	Core Paper – VIII: Applied Electronics	4	3
N/	- 111	PHP404	Core Practical – IV	3	2
IV	- 111	19ABC401	Interdisciplinary course(IDC)*- Biophysics	5	3
	- 111	19ABP401	Biophysics Practical	3	2
	IV	AOBM401	SEC-Skill based course - Business organization	2	2
			and Management	3	Z
			Total	30	21
		19PH509	Core Paper – IX: Optics & Spectroscopy	5	5
v		19PH510	Core Paper – X: Solid state Physics	5	5
v	111	19EPH51A	Elective 1A: Digital Electronics	E	л
		19EPH51B	Elective 1B: Numerical Methods & basic	5	4

B.Sc. Physics Curriculum Template 2020

			computer programming							
	III	19EPH52A	Elective 2C: Geophysics	E	4					
		19EPH52B	Elective 2D:Fibre Optic Communication	C	4					
	111	PHP505	Main Practical – V	6	4					
	IV	19SPH51	Skill development course- Electrical Wiring ^{\$}	4	3					
	IV	19SSPH52	SSC ## (optional) Everyday Physics		2*					
		Total								
	Ш	5	5							
	III	19PH612	Core Paper – XII: Nuclear & Radiation Physics	5	5					
		19EPH63A	Elective 3E:Astrophysics	F	4					
VI		19EPH63B	5	4						
	III	JPH601	Elective 4: Project	5	4					
	III	PHP606	Main Practical – VI	6	4					
	IV	19SPH61	Skill development Course- Computer Literacy ^{\$}	4	3					
			Total	30	25					
	V	EU601	Extension activities		2					
		180	140							
	All other disciplines except physics									
111	IV	Electrical and Electronic Fundamentals	3	3						

Extra courses –given extra credits -SSC

##- ONLY INTERNAL

• READING, WRITING, LISTENING ORAL TEST COMPONENT EXERCISES ONLY. SEPARATE TEST BASED ON THE ABOVE COMPONENT TO BE TESTED

Value Added Courses: Wiring and Repairing of Domestic Appliances Non Major Elective Course: Electrical and Electronic Fundamentals

Syllabus 2020-2021 Physic									hysics					
YEAR- I	Cou	rse Cod	e:		Title	e of t	the	Paper:				HRS/\	NK	CREDITS
SEM- I	19	PH101			PROPE	RTIE	s o	F MATT	ER			4		3
Course Out	come	S												I
CO1	Lear	n the ba	asics of	elas	ticity and	d its	imp	ortance	in be	eam	าร			
CO2	Stud	y the c	oncept	s of	Elasticity	/ an	d tł	ne vario	us me	eth	ods to	determ	ine the I	parameters
	expe	eriment	ally											
CO3	Acqu	uire Kno	wledg	e of	bending	of b	ean	ns						
CO4	Be fa	Be familiar with the surface tension												
CO5	Stud	Study the concepts of viscosity and surface tension and the various methods to												
	dete	letermine the parameters experimentally												
Mapping of course outcomes with the program specific outcomes														
Course	Programme Outcomes POs Programme Specific Outcomes PSOs										SOs	Mean		
Outcomes														Score of
Cos											CO's			
	PO1	PO2	PO3	PO4	4 PO5	PSO	01	PSO2	PSO	3	PSO4	PSO5	PSO6	
CO1	4	3.8	4	3.5	3.5	3.	8	3.5	3		4	3	4	3.65
CO2	3.5	3	3.5	3	3.5	4		4	4		4	3	4	3.59
CO3	3	3.5	3	4	3.5	3		3	3.5	;	4	3.5	3	3.36
CO4	3	4	4	3	2	3.	5	3.5	3.5	;	3.5	4	2.5	3.32
CO5	4	4	4	3.5	5 4	4		3.5	4		4	3.5	2.5	3.73
				ſ	Mean Ov	eral	Sco	ore						3.53
				Resu	ult: The S	core	e fo	r this co	urse i	isHi	igh			
Mapping		1-2	0%		21-40%	0 0		41-60%			61-80	%	81	-100%
Scale		-	L		2			3			4			5
Relation		0.0	-1.0		1.1-2.0)		2.1-3.0			3.1-4	.0	4.	.1-5.0
Quality		Very	Poor		Poor		Ν	Noderat	e		High	n	Ve	ry High
	•			·		Valu	ie S	caling	•					
Mean Score of COs= Total Values Total No.of POs & PSOs								Mean Overall Score of COs= $\frac{Total Mean Scores}{Total No.of COs}$						

UNIT- I: ELASTICITY-I

Hooke's law – stress – strain diagram – Modulus of elasticity - Relation between elastic constants – Poisson's ratio- Expressions for Poisson's ration in terms of elastic constants – work done in stretching of a wire and twisting a wire.

UNIT- II: ELASTICITY-II

Twisting couple on a cylinder – Torsional pendulum without mass– Rigidity modulus and moment of inertia – Rigidity modulus by static torsion - q, n and σ by Searle's method.

UNIT- III: BENDING OF BEAMS

Bending moment-Expression for Bending moment-Cantilever-Expression for depression at the loaded end of a cantilever-Experiment to determine Young's modulus by Cantilever depression(Pin and Microscope)-Cantilever Oscillations-Expression for time period- Experiment to determine Young's modulus by Cantilever Oscillations(Dynamic method)- Non-Uniform bending-Expression for depression at the mid point of a beam subjected to Non uniform bending- Experiment to determine Young's modulus by Non uniform bending (using pin & microscope)-Uniform bending- Expression for elevation at the mid point of a beam subjected to Uniform bending(using pin & microscope)-Experiment to determine Young's modulus by Koenig's method (Non-Uniform bending).

UNIT- IV: SURFACE TENSION

Molecular Interpretation - dimensions of surface tension – Excess of pressure over curved surfaces – Application to spherical and cylindrical drops and bubbles – Variation of surface tension with temperature – Jaeger's method.

UNIT- V: VISCOSITY

Co-efficient of viscosity and its dimensions – Rate of flow of liquid in a capillary tube – Poiseuille's formula – Experiment to determine co-efficient of viscosity of a liquid(Constant volume method) – variation of viscosity of a liquid with temperature and pressure.

TEXT BOOKS:-

- 1. BrijLal, N. Subrahmanyam, Properties of Matter, S. Chand Publications, 2002.
- 2. Murugeshan .R, Properties of Matter and Acoustics, New Delhi, S. Chand & Co, 2006.
- 3. Mathur D.S., Elements of Properties of matter, S. Chand, 2006.

REFERENCE BOOKS:-

- 1. C.L. Arora, P.S. Hemine., Physics for Degree students. First B.Sc Physics, 2010.
- For Question paper pattern refer pg. no. 57

(12Hours)

(12Hours)

(12Hours)

(12Hours)

(12 Hours)

Syllabus	Syllabus 2020-2021 Physics											
YEAR- I	Cour	se Cod	e:		Title	e of the	Paper:			HRS/	WK	CREDITS
SEM- I	19	PH102			r	MECHAI	NICS			4		3
Course Out	comes	;										I
CO1	Unde	erstand	the ba	isic ide	as of C	entre o	f Gravity	, Centr	e of Pres	ssure an	d Fluid d	ynamics.
CO2	Unde	erstand	the va	rious	concep	ts of me	echanics	involve	ed in Rigi	d bodie	s.	
CO3	Acqu	ire the	conce	pts of	space s	science						
CO4	Acqu	ire the	knowl	edge a	bout th	ne proje	ectile an	d frictio	on			
CO5	Apply	y the ki	nowled	lge to t	the me	chanisn	n of syst	em of p	articles.			
	Mapping of course outcomes with the program specific outcomes											
Course	Pro	gramm	ne Outo	comes	POs	Pr	ogramn	ne Spec	ific Outo	comes P	SOs	Mean
Outcomes									Score of			
COs												CO's
	PO1 PO2 PO3 PO4 PO5				PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4	4	3.5	4	3.8	3.5	3	3.5	3.5	3.5	3	3.57
CO2	2.5	4	3	4	4	3.5	3.5	3.5	4	4	3.5	3.59
CO3	3.5	3.5	4	3.5	3.5	3.5	4	4	3.5	3	3.5	3.59
CO4	3	4.5	3.5	4	3.5	4	3	3	3.5	4	3.5	3.59
CO5	3	4	2.5	4	4	4	3.5	3.5	4	3.5	4	3.64
				M	ean Ov	verall Sc	ore					3.60
				Result	: The S	core fo	r this co	urse is	High			
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	81	-100%
Scale		:	1		2		3		4			5
Relation	0.0-1.0 1.1-2)	2.1-3.0		3.1-4	.0	4.	.1-5.0
Quality		Very	Poor		Poor	1	Moderat	e	Higł	l	Ve	ry High
				I		Value 9	Scaling	I			1	
$Mean Score of COs = \frac{Total Values}{Total No.of POS \& PSOs} Mean Overall Score of COs = \frac{Total Mean Scores}{Total No.of COs}$												

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1. 7

Syllabus 2020-2021

UNIT-I: STATICS, HYDROSTATICS AND FLUID MECHANICS

Centre of gravity- Centre of gravity of a Solid cone- Centre of gravity of a Solid hemisphere-Thrust-Centre of pressure- Vertical rectangular lamina.

Equation of continuity of flow- Energy of the fluid- Euler's Equation of unidirectional flow -Bernoulli's theorem.

UNIT-II: MECHANICS OF RIGID BODIES

Rigid body- Moment of inertia- Radius of gyration- moment of inertia of a solid cylinder, cylindrical shell, solid sphere, spherical shell - Bifilar pendulum- Compound pendulum-Determination of g and k.

UNIT-III: SPACE SCIENCE

Rockets and satellites- Basic principles of rocket motion - Rocket equation, Thrust and acceleration-Escape velocity of multistage rockets. Liquid, solid and cryogenic propellant rockets- Space shuttle-Orbital velocity- Launching of satellites - Types of satellite Orbits.

UNIT IV: PROJECTILES AND FRICTION

(12 hours) Introduction to projectile motion-Projectile on an inclined plane -Friction- Laws of friction- Sliding friction - Angle of friction- Cone of friction- Equilibrium of a body on a rough inclined plane acted upon by an external force- Rolling friction and stability.

UNIT-V MECHANICS OF A SYSTEM OF PARTICLES

Generalized Co-ordinates- transformation equations- configuration space- principle of Virtual work- D' Alembert's principle- Lagrange's equations and its applications.

TEXT BOOKS:-

- 1. Narayanamoorti and Nagarathnam, Statics, Hydrostatics and Hydrodynamics, National Publishing Company, III Edition, 1997.
- 2. Murugeshan, Mechanics and Mathematical Methods, S.Chand and Co., 2005.
- 3. Mathur. D.S., Mechanics, II Edition, S. Chand & Co., 2006.
- 4.
- 5. Gupta Kumar and sharma, *Classical Mechanics*, PragatiPrakashan, 2001.
- 6. C.L. Arora, Mechanics, S. Chand Publishing, 2014.

REFERENCE BOOKS:

- 1. Feynmann R.P, Leighton R.B and Sands M, The FeynmannLectures on Physics, Vols 1, 2 and 3, Narosa, New Delhi, 1998.
- 2. Brijlal and Subramaniyam, *Mechanics and Electrodynamics*, S. Chand, KindleEdition, 2005.
- 3. Bhatia V.B., Classical Mechanics, Tamil Nadu Book House, 1997.
- 4. Charles Kittel, Walter Knight, MalvinRuderman, Carl Helmholz, Burton Moyer, Mechanics: Berkeley Physics Course, 2017.
- 5. SomnathDatta Sunil Dutta, Mechanics, Pearson, 2010
- 6. Herbert Goldstein, Classical Mechanics, Pearson, 2011.
- 7. Rana&Joag, Rana, Classical Mechanics, Tata McGraw-Hill Education, 2001.
- 8. David Kleppner, Robert Kolenkow, An Introduction to Mechanics, McGrawHill, 2017.
- 9. A. P. French, Newtonian Mechanics, Viva Norton Student Edition, 2011
- For Question paper pattern refer pg. no. 57

(12hours)

(12 hours)

(12 hours)

Physics

(12 hours)

YEAR – I		PHP101
SEMESTER – I	PRACTICAL – I	HRS/WK – 3
CORE – PRACTICAL - 1		CREDIT – 2

(Any nine out of the given 12 experiments)

- 1. Young's Modulus by Non-Uniform Bending Pin and Microscope
- 2. Young's Modulus by Non-Uniform Bending Optic Lever.
- 3. Rigidity modulus- Torsional Pendulum n of a wire (without masses)
- 4. Rigidity modulus Torsional Pendulum n (with masses)
- 5. Sonometer Determination of Frequency of tuning fork.
- 6. Sonometer Determination of Specific Gravity of Solid and Liquid.
- 7. Surface tension by drop weight and Interfacial liquid– Drop Weight Method.
- 8. Comparison of Viscosity of two liquids
- 9. Focal Length and Refractive Index of Convex Lens (u-v method and conjugate foci methods for 'f' and Boy's method for R).
- 10. Spectrometer μ of the hollow Prism
- 11. Potentiometer Calibration of low range voltmeter.
- 12. Rigidity modulus by Static Torsion (mirror and telescope method).
- For Question paper pattern refer pg. no. 57

YEAR- I	Cou	irse Co	de:		Ti	tle of th	ne Paper	:		HRS/	WK	CREDITS
SEM- II	1	9PH203	3		TH	IERMAI	PHYSIC	S		4		3
Course Outo	omes											
CO1	Acqu Entro	ire kno opy	wledg	e of n	nethods	of hea	t transm	ission	, differe	nt types o	of Heat o	engines and
CO2	Unde	erstand	the na	iture a	and the	kinetic 1	theory o	fgases	5			
CO3	Unde	erstand	the dif	fferen	it metho	ds of lic	quefactio	on of g	ases.			
CO4	Study	Study the concepts of low temperature physics, refrigeration and air conditioning.										
CO5	Unde	Understand the concepts oflatent heat and its effect on boiling point and melting point and										
	the s	the significance of Maxwell's thermodynamical relations.										
Mapping of course outcomes with the program specific outcomes												
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs									Os	Mean
Outcomes									Score of			
COs												CO's
	PO1 PO2 PO3 PO4 PO5			PSO1	PSO2	PSOS	B PSO4	PSO5	PSO6			
CO1	4	3.5	4	3.5	4	3.5	4	4	3.5	3.5	3.5	3.73
CO2	3.5	4	4	3.5	4	3.5	4	3.5	4	3.5	2.5	3.64
CO3	4	4	3.5	4	3.5	4	3	3.5	3.5	3.5	4	3.68
CO4	3	4	3.5	4	3.5	4	4	3.5	3.5	3.5	4	3.68
CO5	4	4	3.5	3.5	4	4	3.5	4	3.5	3	3.5	3.68
		1		N	lean Ov	erall Sco	ore	1		ł		3.68
				Resu	lt: The S	Score fo	or this co	urse is	5 High			
Mapping		1-2	20%		21-40%	6	41-60%		61-	80%	8	1-100%
Scale			1		2		3			1		5
Relation	0.0-1.0 1.1-2)	2.1-3.0		3.1	-4.0		4.1-5.0
Quality		Very	Poor		Poor		Moderat	e	Hi	gh	V	ery High
				1		Value S	Scaling					
Mean Sc	$Mean Score of COs = \frac{Total Values}{Total No.of POs \& PSOs} Mean Overall Score of COs = \frac{Total Mean Scores}{Total No.of COs}$											

Syllabus 2020-2021

UNIT- I: HEAT AND THERMODYNAMICS

HEAT: C_P , C_V and γ of a gas- Mayer's relation- Basics of Heat transfer: Conduction, Convection, Radiation- Mechanical equivalent of Heat.

THERMODYNAMICS: Reversible and irreversible processes – Heat engines – Otto and diesel engines - thermodynamic scale of temperature - entropy - change of entropy in reversible and irreversible processes - T-S diagram- entropy for a perfect gas - third law of thermodynamics

UNIT- II: KINETIC THEORY OF GASES

Expression for pressure - Transport phenomenon - expression for mean free path - thermal conductivity and diffusion of gases - distribution of molecular velocities - energy distribution function - Degrees of freedom - equipartition law of energy.

UNIT- III: Adiabatic and Isothermal changes and Liquefaction of gases

Reversible adiabatic and isothermal changes- equations - Clement and Desormes method of determining C_p / C_v – Andrew's work on Co₂– regenerative cooling – the Linde process – Liquefaction of air and hydrogen-KamerlinghOnnes Cascade method for Liquefying Oxygen.

UNIT- IV: LOW TEMPERATURE PHYSICS

Helium – He I and He II – super fluidity - practical applications of low temperatures – refrigerating machines- electroflux refrigerator - Frigidaire - air conditioning machines - effects of CF2 and Cl2 on Ozone layer.

UNIT- V: PHASE TRANSITION

First Latent heat equation (Clausius – Clapeyron equation), effect of pressure on melting and boiling point - second Latent heat equation - Maxwell's Thermodynamical relations-derivations.

TEXT BOOKS:-

- 1. Mathur D.S., Heat and Thermodynamics, S. Chand, 2014.
- 2. Narayanamoorthy Nand Nagarathinam N, Heat, National publishing Co, Chennai, Eight Edition, 1987.
- 3. Murugeshan.R., Thermal Physics., S. Chand & Co., 2009.
- 4. Brijlal and Subramanyam, Heat and Thermodynamics, S. Chand & Co., 2000.

REFERENCE BOOKS:-

- 1. Nelkon Parker, Advanced Level Physics, (Vol.V), Arnold Publication, Berkely Series, 1995.
- 2. Dr. Ilangovan and Dr.D. Jayaraman,, Thermal Physics, S. Chand & Co., 2014.
- For Question paper pattern refer pg. no. 57

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Syllabus	5 202	0-202	1								Phy	sics
YEAR- I	Οοι	irse Co	de:		Т	itle of tl	ne Papei	:		HRS/	WK	CREDITS
SEM- II	1	9PH204	1		WAVE	S AND O	OSCILLA	TIONS		4		3
Course Out	comes											
CO1	Acqu	ire kno	wledge	of Sir	nple Ha	rmonic I	Notion					
CO2	Unde	erstand	the cha	aracte	r of Trar	nsverse	waves					
CO3	Unde	erstand	the cha	aracte	r of Lon	gitudina	l waves	and Dop	opler eff	ect		
CO4	Acqu	ire the	knowle	edge o	fprodu	ction, de	etection	and app	lications	of Ultra	sonics	
CO5	Acqu	ire kno	wledge	of Ac	oustics.							
		Map	ping of	cours	e outco	mes wit	h the pr	ogram s	pecific o	utcome	S	
Course	Pro	ogramn	ne Outo	comes	POs	P	Programme Specific Outcomes PSOs					
Outcomes									Score of			
Cos												CO's
	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6											
CO1	4	4	3.5	4	3.5	4	4	3.5	3.5	4	3.5	3.77
CO2	3.5	3.5	3.5	4	4	3.5	4	3.5	4	4	4	3.77
CO3	4	4	4	3.5	4	3.5	3.5	3.5	3.5	4	4	3.77
CO4	4	3.5	3.5	3.5	3.5	3	2.5	4	4	3.5	4	3.55
CO5	3.5	4	3.5	4	3.5	3.5	4	4	3.5	3.5	3.5	3.68
				Ν	/lean Ov	verall Sco	ore					3.71
				Resu	lt: The	Score fo	r this co	urse is H	ligh			
Mapping		1-2	20%		21-40%	6	41-60%	,	61-80)%	8:	1-100%
Scale			1		2		3		4			5
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0		3.1-4	.0	۷	1.1-5.0
Quality		Very	Poor		Poor		Moderat	e	High	า	Ve	ery High
	1					Value S	Scaling	·				
Mean S	Mean Score of COs= Total Values Total No.of POs & PSOs							Mean Overall Score of COs= $\frac{Total Mean Scores}{Total No.of COs}$				

Syllabus 2020-2021

UNIT - I: SIMPLE HARMONIC MOTION

Simple harmonic motion– Velocity and acceleration in SHM – Energy of a simple harmonic oscillator (LC) –Examples of simple harmonic oscillators in electrical systems – Superposition of two SHMsof Equal time periods and acting at right angles to each other - Lissajous figures –Damped harmonic oscillations.

UNIT - II: TRANSVERSE WAVES

Introduction to transverse waves – Velocity of transverse waves in stretched string – Standing waves on a string-Determination of AC frequency using Sonometer (Steel wire)– Energy of a vibrating string – Standing wave ratio.

NIT - III: LONGITUDINAL WAVES

Introduction to longitudinal waves – Sound waves in gases – Energy distribution in sound waves – Intensity of sound waves – Longitudinal waves in a solid – Example: earthquake – Doppler Effect.

UNIT - IV: ULTRASONICS

Ultrasonics – Production of Ultrasonics: Piezo electric effect- Piezo electric crystal generator – Magnetostriction generator –Detection of ultrasonics –Thermal detectors – Piezo electric detectors - Applications of Ultrasonics- Ultrasound scan – NDT.

UNIT - V: ACOUSTICS

Reflection and transmission of sound waves at boundaries – Diffraction of sound waves- Noise and music – Limits of human audibility – The decibel unit- Reverberation time-Sabine's formula for growth and decay – Acoustics of auditoriums and halls– Introduction to acoustic transducers.

Textbooks

- 1. H. J. Pain, ThePhysics of Vibrations and Waves, John Wiley, (2005), 6th Edition, for Units I, II & III.
- 2. N. Subrahmanyam, Brijlal, A Text Book of Sound, Second Edition, Vikas Publishing house PVT Ltd, 2016.

Reference Books

- 1. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley &Sons(2004), 7th Edition.
- 2. Berkeley Physics Course-Waves: Volume-III, McGraw Hill, (1969).
- 3. A. P. French, Vibrations and Waves (M.I.T Introductory Physics Series), CRC Press, (1971).
- 4. Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens and James V. Sanders, Fundamentals of Acoustics, John Wiley, (2000).
- 5. Richard P. Feynman, Robert B. Leighton, Matthew Sands, Feynman Lectures on Physics: TheDefinitive and Extended Edition. Addison-Wesley, (2005), 2nd Edition.
- For Question paper pattern refer pg. no. 57

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

YEAR – I		PHP202
SEMESTER - II	PRACTICAL – II	HRS/WK - 3
CORE – PRACTICAL - 2		CREDIT - 2

(Any nine out of the given 12 experiments)

- 1. Young's Modulus by Uniform Bending Pin and Microscope
- 2. Young's Modulus by Uniform Bending Optic Lever.
- 3. Thermal Conductivity of the Bad Conductor Lee's Disc Method.
- 4. Specific heat capacity of liquid by method of mixtures (Half-time Correction).
- 5. Specific heat capacity of liquid by Newton's Law of cooling.
- 6. Spectrometer i-d Curve.
- 7. Focal Length R $\&\mu$ of a concave lens.
- 8. Potentiometer Calibration of an Ammeter.
- 9. Sonometer Comparison of Linear Densities
- 10. Air wedge thickness of a wire
- 11. M and B_H TanC Deflection and vibration Magnetometer.
- 12. Figure of merit of a table galvanometer.
- For Question paper pattern refer pg. no. 57

YEAR- II	Cou	rse Co	de:		Ti	tle of th	ne Paper	:		HRS/	WK	CREDITS
SEM- III	19	9PH30	5	E	LECTRI	CITY AN	D MAGI	NETISM		4		3
Course Outo	comes											
CO1	Unde	erstand	the co	ncepts	of Eleo	ctrostat	ics and t	he laws	associat	ed with	them.	
CO2	Acqu	ire kno	wledge	e of cu	rrent el	ectricity	y and the	ermoele	ectricity			
CO3	Unde	erstand	the gr	owth a	nd dec	ay of ch	arge and	d currer	nt in DC o	circuits.		
CO4	Unde	erstand	the ba	sics of	AC and	d Electro	omagnet	ic induc	tion			
CO5	unde	rstand	the co	ncepts	of mag	gnetic p	ropertie	s mate	rials			
Mapping of course outcomes with the program specific outcomes												
Course	Pro	gramm	ne Outo	comes	POs	Pr	ogramm	ne Speci	fic Outc	omes PS	Os	Mean
Outcomes									Score of			
COs												CO's
	PO1 PO2 PO3 PO4 PO5				PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4.5	4.8	4	4.5	4	4	4.2	3.5	4	4.5	4	4.18
CO2	3	3.5	4	4.5	4	4	4	4	3.5	4	2.5	3.73
CO3	4	4	4.5	3.5	4	3.5	3	3	3.5	4	3.5	3.68
CO4	3.5	3	3	3.5	4	4.5	4	4	3.5	3	3.5	3.59
CO5	4	3	3	3.5	3	3	3.5	3.2	3	3	3	3.15
				М	ean Ov	erall Sco	ore					3.68
				Resul	t: The S	Score fo	r this co	urse is	High			
Mapping		1-2	20%		21-40%	6	41-60%	1	61-80)%	8	1-100%
Scale			1		2		3		4			5
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0		3.1-4	.0		4.1-5.0
Quality		Very	Poor		Poor	1	Voderat	Aoderate High Very High				
	·			•		Value S	Scaling	·				
$Mean Score of COs = \frac{Total Values}{Total No.of POS \& PSOs} Mean Overall Score of COs = \frac{Total Mean}{Total No.of POS \& PSOs}$								n Scores .of COs				

UNIT I **ELECTROSTATICS**

Coulomb's law – electric intensity and electric potential – electrical images (any four examples) electric intensity and potential due to an earthed conducting sphere applying the principle of electrical images-capacity – capacitance of a spherical and cylindrical capacitor – energy of a charged capacitor - loss of energy due to sharing of charges

UNIT II CURRENT ELECTRICITY (12 hours)

Carey foster bridge - theory - Determination temperature co-efficient of resistance - Calibration of voltmeter - Ammeter - Using Potentiometer - thermoelectricity- Peltier's coefficient - Thomson coefficient - application of thermodynamics to a thermocouple and connected relationsthermoelectric diagram and uses.

UNIT III TRANSIENT CURRENT

Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitor-Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – frequency of oscillation.

UNIT IV A.C AND ELECTROMAGNETIC INDUCTION

Power in AC circuit – wattless current- choke coil -construction and working of transformers- energy losses -single phase, and three phase AC - star and delta connection -electric fuses- circuit breakers.Self Inductance-Mutual Inductance-Inductances in series and parallel-Self-inductance of coaxial cylinders.

UNIT V MAGNETIC PROPERTIES OF MATERIALS (12 hours)

Susceptibility- permeability- intensity of magnetization and the relation B= u(H+M), M-H and B-H curves for a magnetic material using magnetometer method and ballistic galvanometer method -Terrestrial magnetism – magnetic elements- dip circle.

TEXT BOOKS:

- 1. Murugeshan R, *Electricity and Magnetism*, 8th Edition, New Delhi, S. Chand & Co., 2006.
- 2. Brijlal and N. Subramanian, Electricity and Magnetism, 6th Edition, Agra, Ratan& PrakashNarayanamoorthy M, Nagarathnam N, *Electricity and Magnetism*, 4th edition, Meerut, National Publishing Co.
- 3. Tewari. K. K, *Electricity and Magnetism*, 3rd Edition, New Delhi, S. Chand & Co., 2001.
- 4. Arora C.L., *Electricity and Magnetism*, S. Chand Publishing, 2014.
- 5. Mathur D.S., *Electricity and Magnetism*, 12th Edition, S. Chand.

REFERENCE BOOKS:

- 1. David J Griffith, Introduction to Electrodynamics, 2nd Edition, New Delhi, Prentice Hall of India Pvt. Ltd, 1997.
- 2. Sehgal D.L, Chopra K. L and Sehgal N. K, Electricity and Magnetism, New Delhi, Sultan Chand & Co.,
- For Question paper pattern refer pg. no. 57

(12 hours)

(12 hours)

(12 hours)

Syllabus	Syllabus 2020-2021 Physics											
YEAR- II	Cou	irse Co	de:		Ti	tle of th	ne Paper	:		HRS/	WK	CREDITS
SEM- III	1	9PH306	5		BA	SIC ELE	CTRONIC	cs		4		3
Course Out	comes											
CO1	Unde	erstand	the co	ncept	of Diod	es and it	ts charao	cteristic	S			
CO2	Unde	erstand	the cha	aracte	eristics o	f transis	stors					
CO3	Acqu	ire the	knowle	edge o	of variou	s oscilla	itors					
CO4	Unde	erstand	the wa	ive sh	aping ci	rcuits ar	nd multi	vibrato	rs			
CO5	Acqu	cquire the knowledge of various applications of electronics										
	Mapping of course outcomes with the program specific outcomes											
Course	Pro	ogramn	ne Outo	comes	s POs	Pr	Programme Specific Outcomes PSOs					Mean
Outcomes									Score of			
COs												CO's
	PO1 PO2 PO3 PO4 PO5				PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4	3.5	3.5	3.5	4	3.5	4	4	3	3	3	3.55
CO2	4	3.5	2.5	4	3.5	4	3.5	3.5	3	3	4	3.50
CO3	3.5	4	3.5	4	4	4	4.5	3.5	3.5	3.5	3.5	3.77
CO4	3.5	3.5	4	3.5	4	3.5	4	4	3	3.5	3.5	3.64
CO5	4	4	4	4	3.5	3	4	3.5	3	3.5	3.5	3.64
				N	lean Ov	erall Sco	ore					3.62
				Resu	lt: The S	core fo	r this co	urse is l	ligh			
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	8	1-100%
Scale			1		2		3		4			5
Relation	0.0-1.0 1.1-2.				1.1-2.0)	2.1-3.0		3.1-4	.0	4	4.1-5.0
Quality		Very	Poor		Poor	1	Moderat	e	Higl	h	Ve	ery High
	<u>I</u>			I		Value S	caling	I			1	
Mean Sc	ues s & PSOs		Mean Overall Score of COs= $\frac{Total Mean Scores}{Total No.of COs}$									

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1. 17

UNIT - I: DIODES AND ITS APPLICATIONS

PN junction diode - Half-wave, full-wave and bridge rectifier – expression for efficiency and ripple factor – π section filter – Zener diode –Zenerregulated power supply.

UNIT –II: TRANSISTOR BIASING AND TRANSISTOR AMPLIFIERS

Different modes of operation -biasing and characteristics of a transistor in CE mode-h Parameters of CE mode- α and β of a transistor – Potential divider bias-Double stage RC coupled amplifier – frequency response curve- classification of amplifiers - class A power amplifier - Push-pull, class B power amplifier – Emitter follower.

UNIT –III: OSCILLATORS

Voltage gain of a feedback amplifier – Barkhausen criterion – Hartley, Colpitt's, and Phase shift oscillators- expression for frequency of oscillations and condition for sustained oscillations in each case-frequency stability.

UNIT -IV: WAVE SHAPING CIRCUITS AND MULTI VIBRATORS

Clipping and clamping circuits - integrating and differentiating circuits - RC time constants.Multivibrators – Astable, – Mono stable and bi-stable multivibrators – Schmitt trigger

UNIT -V: TESTING ELECTRONIC COMPONENTS

Testing various cables, connectors and fuses (Continuity test using multimeter)- Identifying, finding values and testing different types of resistors and Capacitors(by colour codes &multimeter)-Identifying (leads & type) and Testing Diodes, Zener diodes and Transistors(using multimeter) -Testing IC's.

TEXT BOOKS

- 1. B.L. Theraja, *Electronics*, S. Chand Publishing, 2005.
- 2. V. K Mehta, Principles of Electronics, S. Chand & Co., 2005.
- 3. M.K. Bagde, S. P. Singh, *Elements of Electronics*, S. Chand Publishing, 2000.
- 4. K.V. Ramanan, Functional Electronics, McGraw-Hill Inc., US, 1984.
- 5. B. Grob, *Basic Electronics*, McGraw Hill Education, 12th Edition.
- 6. M. Arul Thalapathi, *Basic and Applied Electronics*, Comtek publisher, 2005.

REFERENCE BOOKS

- 1. A. Malvino, *Electronics Principles*, McGraw Hill Education, 7th Edition, 2006.
- 2. Allen Mottershed, *Electronic Devices and Circuits*, Goodyear Pub. Co., 1973.
- 3. Manna, Solid state electronics, Tata McGraw Hill
- 4. R.S. Sedha, *Applied Electronics*, S. Chand & Company Ltd; 2nd New Edition, 2000.
- For Question paper pattern refer pg. no. 57

(12 hours)

Physics

(12 hours)

(12 hours)

(12 hours)

(12 hours)

Syllabus 2020-2021

Physics

YEAR – II		PHP303
SEMESTER – III	Practical - III	HRS/WK - 3
CORE – PRACTICAL – III		CREDIT - 1

(Any nine out of the given 12 experiments)

- 1. Compound Pendulum
- 2. Bifilar Pendulum
- 3. Field along the axis of Circular Coil $B_{\rm H}$
- 4. Young's modulus- Cantilever oscillations(Dynamic method) -Pin and microscope.
- 5. Young's modulus-Cantilever Depression scale and telescope
- 6. Sonometer-ac frequency using steel wire
- 7. Sonometer-ac frequency using brass wire
- 8. Spectrometer-grating-normal incidence method
- 9. Spectrometer-grating-minimum deviation method
- 10. Surface Tension of the Liquid Capillary Rise Method
- 11. Young's Modulus by Koenig's method(Non-Uniform Bending)
- 12. Potentiometer- Resistance- Specific Resistance of a wire
- For Question paper pattern refer pg. no. 57

Syllabus	; 2020)-202	1								Ph	nysics
YEAR- II	Cou	rse Co	de:		Ti	tle of th	ne Pape	r:		HRS/	WK	CREDITS
SEM- IV	19	9PH407	7		А	томіс	PHYSIC	S		4		3
Course Out	comes		I									I
CO1	Acqu	ire kno	wledg	e thr	ough disc	charge p	henom	enon th	rough ga	ises		
CO2	Get t	he basi	ic knov	vledg	ge of ator	nic stru	cture					
CO3	Acqu	ire kno	wledg	e ion	ization p	otential	and spli	itting of	energy	levels		
CO4	Unde	erstand	the co	ncep	ot of phot	oelectr	icity and	l verific	ations by	experin	nents.	
CO5	Unde	erstand	the pr	oduo	ction and	propert	ties of X	-rays.				
		Марр	ing of	cour	se outco	mes wit	h the pr	ogram	specific	outcome	es	
Course	Pro	gramn	ne Out	come	es POs	Pr	ogramn	Os	Mean			
Outcomes									Score of			
COs												CO's
	PO1 PO2 PO3 PO4 PO5				4 PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3	3.5	3	3.2	2 3.5	4	3	3	3.5	3.5	4	3.38
CO2	4	4	3.5	4	4	4	2.5	3.5	4	3.5	4	3.73
CO3	4	3.5	4	3.5	5 3	3.5	4	4	4	3	3.5	3.64
CO4	3.5	3.5	4	3.5	5 3.5	3.5	4	3.5	3.5	3.5	3.5	3.59
CO5	4	4	3.5	3.5	5 4	4	3.5	4	4	3.5	3	3.73
				•	Mean C	verall S	core					3.61
				Res	ult: The S	Score fo	r this co	ourse is	High			
Mapping		1-2	20%		21-40%	0	41-60%)	61-80)%	8	1-100%
Scale			1		2		3		4			5
Relation	0.0-1.0 1.1-2.)	2.1-3.0		3.1-4	1.0		4.1-5.0
Quality		Very	Poor		Poor	1	Voderate High Very High					
						Value S	Scaling	ł				
Mean Sc	Mean Score of COs= Total Values Total No.of POs & PSOs							Mean Overall Score of $COs = \frac{Total Mean Scores}{Total No.of COs}$				

UNIT I: DISCHARGE PHENOMENON THROUGH GASES

Motion of a charge in transverse electric and magnetic fields – specific charge of electron – Dunnington's method – Magnetron method – positive rays – Thompson parabola method – Aston and Dempster's mass spectrograph.

UNIT II: ATOMIC STRUCTURE

Vector atom model – Pauli's exclusion principle – explanation of periodic table – various quantum numbers – angular momentum and magnetic moment – coupling schemes – LS and JJ coupling – spatial quantization – Bohr magnetron Spectral terms and notations – selection rules – intensity rule and interval rule.

UNIT III: IONISATION POTENTIAL AND SPLITTING OF ENERGY LEVELS(15 hours)

Excitation and ionization potential - Davis and Goucher's method - Zeeman effect - Larmor's theorem – Debye's explanation of normal Zeeman effect – Anomalous Zeeman effect – theoretical explanation- Lande's 'g' factor and explanation of splitting of D1 and D2 lines of sodium – Paschen Back effect – theory – Stark effect (Qualitative treatment only)

UNIT IV: PHOTOELECTRICITY

(15 hours) Photo electricity: Photoelectric emission laws - Lenard's experiment-Richardson and Compton experiment- Einstein photoelectric equation -experimental verification of Einstein's photoelectric equations by Millikan's experiment.

UNIT V: X-RAYS

X-RAYS: Continuous and characteristic X-RAY spectra absorption of X-RAYS by matter- concept of reciprocal lattice, Compton effect-derivation of expression for change in wavelength-experimental verification

TEXTBOOKS

- 1. R. Murugeshan, *Modern Physics*, S. Chand & Co., New Delhi, 2009.
- 2. N. Subramanian and BrijLal, Atomic and Nuclear Physics, S. Chand & Co., 2013.
- 3. J. B. Rajam, *Atomic Physics*, S. Chand Publishing Co., 2010.

REFERENCE BOOKS

- 1. A. B. Gupta and Dipak Ghosh, *Atomic Physics*, Books and Allied Publishers, 2nd Edition, 2009.
- 2. J. H. Hamilton and Yang, *Modern Physics*, McGraw Hill Publication, 1996.
- 3. A. Beiser, Concepts of Modern Physics, Tata McGraw Hill, New Delhi, 1997.
- 4. D. Halliday, R. Resnick and J. Walker, *Fundamentals of Physics*, Willey NY, 6th Edition, 2001.
- For Question paper pattern refer pg. no. 57

(15 hours)

(15 hours)

Physics

YEAR- II	Course Code: Title of the Paper: HRS/WK C								CREDITS						
SEM- IV	1	9PH408	3		APF	LIED EL	ED ELECTRONICS 4 3								
Course Outo	comes														
CO1	Obta	ined k	nowled	dge of	special	devices	and app	licatior	าร						
CO2	Study	y of var	ious lir	near op	peratio	nal amp	lifier cire	cuits							
CO3	Study	udy of various applications of operational amplifier													
CO4	Basis	introd	uction	of555	timer a	nd lock	ed loop								
CO5	Acqu	ire bas	is idea	s of D/	A and A	\/D con	verter								
	1	Mapping of course outcomes with the program specific outcomes													
Course	Pro	gramm	ne Out	comes	POs	Pr	ogramm	ne Speci	ific Outc	omes PS	Os	Mean			
Outcomes												Score of			
COs												CO's			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	3.5	4	3.5	3	3	3 3 2.5 3.5 3 3.5 3.23									
CO2	3.5	4	4	4	4	2.5	2.5	4	4	4	4	3.68			
CO3	3	3.5	3	2.5	4	4	4	3.5	3.5	4	4	3.55			
CO4	3	3.5	2.5	3.5	4	3.5	4	3.5	4	3.5	3.5	3.50			
CO5	4	3.5	4	3.5	3.5	4	3.5	3.5	3.5	3.5	3.5	3.64			
				Μ	ean Ov	erall Sc	ore					3.52			
				Resul	t: The S	Score fo	or this co	urse is	High						
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	8	1-100%			
Scale		-	1		2		3		4			5			
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0		3.1-4	.0	4	4.1-5.0			
Quality		Very	Poor		Poor		Moderat	e	Higl	h	Ve	ery High			
	I			I		Value	Scaling	I							
Mean Sco	ore of	$COs = \frac{1}{T}$	Tot otal No	al Valu .of POs	es & PSOs		Mear	n Overa	ll Score c	of COs= $\frac{1}{2}$	^r otal Mea Total No.	n Scores of COs			

555 Timer block diagram - Monostable operation – Astable operation – Schmitt trigger.Phase –

Locked Loops (PLL): Basic principles – phase Detector- Analog phase detector – Digital phase detector - voltage controlled oscillator (VCO).

UNIT - V : D / A AND A / D CONVERTER

Weighted resistor D/A converter – 4bit R-2R ladder DAC – Analog to Digital converter – Stair case ADC- Successive approximation ADC.

TEXT BOOKS

- **1.** Vijayendran, *Integrated Physics*, S.Viswanathan Pvt. Ltd., 2009.
- 2. R.S. Sedha, *Applied Electronics*, S. Chand & Company Ltd., 2nd New Edition, 2000.
- 3. M. Arul Thalapathi, Basic and Applied Electronics, Cometak Publisher Chennai, 2005.

REFERENCE BOOKS

- 1. Albert Paul Malvino, Digital Computer Electronics, TMH Edition, 1992.
- 2. I.J. Jagrath, *Electronics Analog and Digital*, Prentice Hall of India, New Delhi, 1999.
- 3. Malvino Leach, *Digital Principles and Applications*, 4thEdn., Tata McGraw Hill, 1992.
- 4. Jacob Millman and Christos C. Halkias, Integrated Electronics, McGraw Hill International, 1971.
- 5. D. Roy Choudhury and Shall Jain, *Linear Integrated Circuits*, New age International (p) Ltd., 2010.
- 6. Ramakant A. Gayakwad, OP–AMPS and Linear Integrated Circuits, Prentice Hall of India, 1994.
- For Question paper pattern refer pg. no. 57

Syllabus 2020-2021

UNIT - I : SPECIAL DEVICES AND APPLICATIONS

FET _ Characteristics - parameter FET as amplifier - FET as VVR - MOSFET - Depletion and enhancement – UJT characteristics – UJT as relaxation oscillator – SCR characteristics.

UNIT - II : LINEAR OPERATIONAL AMPLIFIER CIRCUITS (15 hours)

OPAMP – Parameters – inverting and Non-inverting amplifier – gain – Miller effect – Virtual ground – offset voltage – offset current – PSRR - CMRR. OPAMP – Sign and scale changer – adder, subtractor and averager - integrator and differentiator - voltage follower - solving simultaneous linear equation.

UNIT – III : APPLICATIONS OF OPERATIONAL AMPLIFIER

OP AMP logarithmic amplifer – antilogarthmicamplifer – Logarithmic multiplier – Logarithmic divider.Comparator – Schmitt trigger – Astablemultivibrator – Monostablemultivibrator – Bistablemultivibrator – Wein Bridge oscillator – phase shift oscillator.

UNIT - IV : 555 TIMER AND PLL

(15 hours)

(15 hours)

(15 hours)

YEAR – II		PHP404
SEMESTER – IV	PRACTICAL – IV	HRS/WK - 3
CORE – PRACTICAL – IV		CREDIT - 2

(Any nine out of the given 12 experiments)

- 1. Potentiometer comparison of EMF
- 2. Potentiometer- high range voltmeter
- 3. Spectrometer-dispersive power of a grating
- 4. Spectrometer-dispersive power of a prism
- 5. P.O.Box resistance-temperature coefficient
- 6. Field along the axis of a circular coil deflection magnetometer M Null deflection method.
- 7. Carry Fosters bridge- temperature Co-efficient of Resistance
- 8. Field along the axis of a circular coil vibrational magnetometer
- 9. Variation of resistance with temperature (thermistor)
- 10. LCR Studies- Two Resistors- Two Capacitors Two Inductors
- For Question paper pattern refer pg. no. 57

Syllabus	; 202 ()-202	1								Pł	nysics		
YEAR- III	Cou	rse Co	de:		Ti	tle of	the Pape	r:		HRS/	WK	CREDITS		
SEM- V	19	9PH509	•		ΟΡΤΙΟ	CS & SI	PECTROS	СОРҮ		5		5		
Course Outcor	nes													
CO1	Learr	n the ba	asics of	Geom	etrical	Optics	s and Lens	ses						
CO2	Study	/ the co	oncepts	Inter	ference	and i	ts applica	tions						
CO3	Acqu	ire Kno	wledge	e abou	t Diffra	ction	and its ap	plicatior	ıs					
CO4	To U	nderst	and th	e con	cept o	f Pola	rization a	and its	applicat	ion in a	inalyzing	the optical		
	activi	ities												
CO5	To Pr	Fo Procure the Fundamental knowledge of Spectroscopy												
		Mapping of course outcomes with the program specific outcomes												
Course	Pro	gramn	ne Outo	comes	POs	I	Programn	ne Speci	fic Outc	omes PS	SOs	Mean		
Outcomes							Score o							
COs							CO'							
	PO1	PO2	PO3	PO4	PO5	PSO:	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6							
CO1	1.4	3.3	1.1	3.1	2.3	4.2	4.2	4.1	3.8	4.7	2.3	3.13		
CO2	1.2	3.5	1.3	3.2	2.6	4.4	4.3	4.1	3.9	4.2	2.1	3.16		
CO3	1.6	3.8	1.4	3.2	2.6	4.8	4.6	3.9	3.8	4.0	2.4	3.28		
CO4	1.8	3.8	1.4	3.2	2.4	4.5	4.1	3.9	4.2	3.5	2.1	3.17		
CO5	1.2	3.6	1.1	3.3	2.9	4.1	4.4	4.0	4.1	4.3	2.1	3.19		
				Me	an Ove	rall Sc	ore					3.186		
			F	Result:	The Sc	ore fo	or this cou	irse is Hi	gh					
Mapping		1-2	20%		21-40%	6	41-60%	ó	61-80)%	8	1-100%		
Scale			1		2		3		4			5		
Relation		0.0	-1.0		1.1-2.(C	2.1-3.0)	3.1-4	.0		4.1-5.0		
Quality		Very	Poor		Poor		Modera	te	Hig	า	V	ery High		
				•	١	Value	Scaling	•			•			
Mean Sco	re of C	Os= Tot	Total tal No.o	Values f POs &	S PSOs		Mea	n Overal	l Score o	of COs=	Total Mea Total No	in Scores .of COs		

Syllabus 2020-2021

UNIT – I: GEOMETRICAL OPTICS

Spherical aberration and lenses – Methods of minimizing spherical aberration – Condition for minimum spherical aberration in the case of two lenses separated by a distance - Chromatic aberration in lenses – Condition for achromatism of two thin lenses (In contact and out of contact) – Coma - Ramsden and Huygens's eyepieces- Angular dispersion - Dispersive power - combination of prisms to produce dispersion without deviation – Deviation without dispersion – Achromatic prisms Direct vision spectroscope.

UNIT – II: INTERFERENCE

Colours of thin films – Air wedge – Determination of diameter of a thin wire by air wedge – Test for optical flatness – Michelson's Interferometer – Theory – Applications - λ , thickness of thin transparent material and resolution of spectral lines – Brewster's fringes – Refractive index of gases - Jamin's& Rayleigh's Interferometers - Stationary waves in light.

UNIT III: DIFFRACTION

Fresnel diffraction – Diffraction at circular aperture, opaque circular disc, straight edge and narrow wire- Fraunhofer diffraction - single slit - double slit -Rayleigh's criteria - Resolving power of telescope, prism, microscope and grating.

UNIT – IV: POLARIZATION

Double refraction – Nicol prism – polarizer and analyzer – Huygens's explanation of double refraction in uniaxial crystals – Dichroism – polaroids and their uses – plane, circularly and elliptically polarized light - production and detection - Optical Activity - Fresnel's explanation of optical activity - Specific rotatory power - Determination using Laurent's half shade polarimeter - Kerr effect and Faraday effect.

UNIT - V: SPECTROSCOPY

Infrared spectroscopy, RAMAN, NMR, ESR - Principle –Instrumentation – applications-LASER, Principles of LASER, Semiconductor LASER, Nd-Yag LASER- Applications

Text Books

- 1. Subramaniam N & Brijlal, Optics, S. Chand & Co. Pvt. Ltd., New Delhi, 1990.
- 2. Khanna D R & Gulati H R, Optics, S. Chand & Co. Pvt. Ltd., New Delhi, 1979.
- 3. R. Murugesan, Optics and Spectroscopy S. Chand & Co. Pvt. Ltd., New Delhi, 2009.
- 4. Kailash K. Sharma, Optics: Principles and Applications, Academic Press, 2006.

REFERENCE BOOKS

- 1. Jenkins A. Francis and White E. Harvey, Fundamentals of Optics, McGraw Hill Inc., New Delhi, 1976.
- 2. Lipson S G, Lipson H and Tannhauser D S, Optical Physics, Cambridge University Press, 1995.
- 3. Raj M G, Fundamentals of Optics, Anmol Publications Pvt. Ltd, New Delhi, 1996.
- 4. D. Halliday, R. Resnick and J. Waler, *Fundamentals of Physics*, Wiley NY 6th Edition, 2001.
- 5. D Halliday, Resnick and K. S. Krane, *Physics*, 4th Edition Vols I & II, Wiley, 1994.
- 6. R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vols.I, II and III Narosa, New Delhi, 1998.
- 7. G.Aruldhas, Spectroscopy, Vendeur Book Vistas (New Delhi, India), 2009.

(15 hours)

(15 hours)

(15 hours)

(15 hours)

• For Question paper pattern refer pg. no. 57

YEAR- III	Course Code: Title of the Paper: HRS/WK CF									CREDITS				
SEM- V	19	9PH510	ס		SOL	ID STATE PHYSICS 5 5								
Course Outcon	nes													
CO1	To Le	arn the	e Funda	amen	tal of Bo	nds in	ו So	lids						
CO2	To St	udy the	e conce	epts o	of X-ray d	liffract	tion	n its app	plicatio	ns in soli	ds			
CO3	Unde	Inderstanding the properties of Magnetism and its applications in quantum physics												
CO4	Acqu	cquiring the knowledge of Dielectrics and its properties in various materials												
CO5	To Pr	o Procure the knowledge of Superconductivity and its applications												
	1	Mapping of course outcomes with the program specific outcomes												
Course	Pro	Programme Outcomes POsProgramme Specific Outcomes PSOsMean												
Outcomes		Score of												
COs			CO's											
	PO1	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6												
CO1	1.1	3.5	1.2	3.3	2.2	4.4		4.3	4.1	4.5	3.6	2.4	3.14	
CO2	1.2	3.8	1.3	3.3	2.1	3.9		3.7	3.7	3.9	3.7	2.2	2.98	
CO3	1.6	3.8	1.2	3.1	2.3	4.8		4.1	3.8	3.8	3.9	2.5	3.17	
CO4	1.2	3.4	1.6	3.6	2.5	3.9		4.2	4.6	4.3	4.6	2.2	2.95	
CO5	1.4	4.0	1.1	3.7	2.2	4.0		3.9	4.2	4.5	4.3	2.1	3.21	
				Me	ean Over	rall Sco	ore						3.09	
			I	Result	t: The Sc	ore fo	or th	nis cou	rse is Hi	gh				
Mapping		1-2	20%		21-40%	6	4	11-60%		61-80)%	8	1-100%	
Scale			1		2			3		4			5	
Relation		0.0	-1.0		1.1-2.(C	2	2.1-3.0		3.1-4	.0		4.1-5.0	
Quality	Very Poor Poor Moderate High Very High													
	Value Scaling													
Mean Sco	re of C	$Os = \frac{1}{To}$	Tota tal No.o	l Value of POs	es & PSOs			Mean	o Overal	l Score c	of COs= $\frac{1}{2}$	Fotal Mea Total No	in Scores .of COs	

Unit I : BONDS IN SOLIDS

Crystal lattice- primitive and unit cell- seven classes of crystals – Bravais lattice- Miller indicesstructure of crystals- simple cubic, Hexagonal close packed structure-Face centered cubic structure, Body centered cubic structure, Simple cubic structure-Sodium chloride structure, Zinc Blende structure, Diamond structure

Unit II: X-RAY DIFFRACTION

Diffraction of x-rays by crystals-Bragg's law in one dimension-Experimental method in x-ray diffraction-Laue method, Rotating crystal method-Powder photograph method-von Laue's equations-Point defects- Line defects- Surface defects- Volume defects-Effects of crystal imperfections

Unit III: MAGNETISM

Different type of magnetic materials- Classical theory of Diamagnetism(Langevin theory)-Langevin theory of Paramagnetism – Weiss theory of Paramagnetism- Qualitative explanation of Heisenberg's Internal Field and Quantum Theory of Ferromagnetism.

Unit IV: DIELECTRICS

Fundamentals definitions in dielectrics – different types of electric polarization- Frequency and Temperature Effects on Polarization – Dielectric loss – Local Field on internal field Clausius-Mosotti Relation- Determination of Dielectric Constant – Dielectric Breakdown – Properties of Different types of insulating materials

Unit V: SUPERCONDUCTIVITY

Introduction-Meissner effect-Limitation- Type I& II Superconductivity-Vortex states- BCS Theory (Qualitative treatment only)-Josephson's effect-Copper pair tunneling.

TEXT BOOKS

- 1. K. Ilangovan, *Solid State Physics*, MJP Publication, 2012.
- 2. S.O. Pillai, *Solid State Physics*, New Age Science Publication, 2009.
- 3. Arumugam, *Materials Science*, Anuradha Publications, 2015.
- 4. Puri&Babber, *Solid State Physics*, S. Chand Limited, 2008.

REFERENCE BOOKS

- 1. C. Kittel, *An introduction to Solid State Physics*, 5th Edition, Published by John Wiley & Sons Inc, 1976.
- 2. Dekker A.J. Solid State Physics, Mac Millon Ind. Ltd., 1985.
- 3. Ascroft&Mermin, *Solid State Physics*, Pacific Grove, CA: Brooks cole, 1976.
- 4. Gupta and Kumar, Solid State Physics, KNath& Co., 2013.
- For Question paper pattern refer pg. no. 57

Physics

(15 hours)

(15 hours)

(15 hours)

(15 hours)

YEAR- III	Course Code: Title of the Paper: HRS/WK									j/wк	CREDITS		
SEM- V	1	9EPH51	LA		D	IGITA	L ELECTRO	NICS			5	4	
						ELE	ECTIVE – IA	4					
Course Outc	omes												
CO1	To Le	arn the	e Funda	ment	al of Dig	ital el	ectronics &	& Micro	oprocesso	r			
CO2	To St	udy the	e functi	ons of	f Boolea	n Alge	ebra						
CO3	Obtai	ining tl	ne knov	wledg	e about	Arith	metic circu	uits & S	Sequential	Logic ci	rcuits		
CO4	To Le	arn ab	out the	e work	king of D	/A & /	A/D Conve	rters					
CO5	To In	troduce	e the c	oncep	ots and v	vorkin	g of micro	proces	sor 8085				
		Mapping of course outcomes with the program specific outcomes											
Course	Pro	gramm	ne Outo	comes	s POs		Programm	ne Spe	cific Outco	omes PS	Os	Mean	
Outcomes												Score of	
Cos		CO's										CO's	
	PO1	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6											
CO1	2.1	3.5	2.2	3.3	3.5	3.6	4.3	3.6	4.2	4.3	1.1	3.24	
CO2	3.2	3.8	2.3	3.5	2.8	3.4	4.4	3.2	4.6	4.7	1.2	3.43	
CO3	1.1	3.6	1.2	3.1	3.3	3.8	4.1	3.8	4.4	4.4	1.5	3.11	
CO4	4.0	3.4	1.4	2.6	3.5	3.8	4.6	3.3	4.3	4.1	1.2	3.29	
CO5	2.4	4.0	1.3	3.7	3.6	4.0	4.4	4.3	4.3	4.0	1.1	3.37	
				N	/lean Ov	erall S	core		I.			3.304	
				Resu	lt: The S	core f	for this co	urse is	High				
Mapping		1-2	20%		21-40%	6	41-60%	,)	61-80)%	8	1-100%	
Scale			1		2		3		4			5	
Relation		0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0											
Quality		Very	Poor		Poor		Moderat	te	Higl	n	Ve	ery High	
						Value	e Scaling	I					
Mean Sc	ore of	$COs = \frac{1}{T}$	Toto otal No.	al Valu of POs	tes & PSOs		Mea	n Over	all Score o	of COs= $\frac{T}{2}$	otal Mear Total No.e	n Scores of COs	

UNIT- I DIGITAL FUNDAMENTALS

Number systems – decimal, binary, octal and hexadecimal systems – conversion from one number system to another Codes - BCD code - excess 3 code, Gray code - ASCII code - Binary arithmetic -Binary addition – subtraction – unsigned binary numbers – sign magnitude numbers – I's and 2's complement – Binary multiplication and division.

LOGIC GATES AND LOGIC FAMILIES

AND, OR circuits using diodes and transistors – NOT using transistors – NAND, NOR and EXOR – functions and truth tables. NAND & NOR as universal gates.

UNIT – II BOOLEAN ALGEBRA AND SIMPLIFICATION OF LOGIC CIRCUITS(15 hours)

Laws and theorems of Boolean algebra – De Morgan's theorems and their circuit implications – Duality theorem, simplification of Boolean equations - Karnaugh map - pairs, quads, octets - 2,3 and 4 variables – SOP method – NAND – NAND circuits – POS method – NOR – NOR circuits.

UNIT - III ARITHMETIC CIRCUITS AND SEQUENTIAL LOGIC CIRCUITS(15 hours)

Arithmetic building blocks – Half adder – Full adder – parallel binary adder – Half subtractor – Full subtractor – The adder-subtractor – digital comparator – parity checker/generator.Flip-flops –JK flip - flop - JK master slave flip-flop --Flip flop applications. Shift register functions- Shift right-shift left-Shift register applications.

UNIT - IV: D/A AND A/D CONVERTERS

Introduction – variable resistor network – binary ladder – D/A converter – D/A accuracy and resolution – A/D converter – simultaneous conversion – A/D accuracy and resolution.

UNIT - V: INTRODUCTION TO MICROPROCESSOR 8085 (15 hours)

Basics of semiconductor memory- RAM, ROM, PROM and EPROM. Microcomputer organization-8085 Microprocessor-pin functions-architecture-machine and assembly language-programmer's model of 8085-8085 addressing modes. Classification of instruction and format – 8-bit data transfer and arithmetic instructions.

TEXT BOOKS

- 1. Arul Thalapapathi, Fundamentals of Digital Computers, Comptek Publishers, Chennai, 1995.
- 2. Vijayendran, Fundamentals of Microprocessor 8085, S. ViswanathanPrinters&PublishersPvt.Ltd, 2006.
- 3. Vijayendran, Integrated Electronics, Viswanathan, S., Printers & Publishers Pvt. Ltd., 2009.
- 4. NagoorKani, *Microprocessor*, RBA Publications, 2016.
- 5. B. Ram, Introduction to Microprocessor and Microcontroller, DhanpatRai Publications, 2012.

REFERENCE BOOKS

- 1. Malvino and Leech, Digital Principles and Application, 4th Edition, Tata Mcgraw Hill, New Delhi, 2000.
- 2. Millman and Halkias, Integrated Electronics, International Edition, McGraw Hill, New Delhi, 1972.
- 3. T. C. Bartee, Computer Architecture and Logic Design, McGraw Hill, 1991.
- 4. J.P. Agarwal and Anit Agarwal, *Solid State Electronics*, PragatiPrakashan, 2nd Edition, 2014.
- 5. Herbert Taub and Donald Schilling, *Digital Integrated Electronics*, McGraw Hill, 1st Edition, 2008.
- 6. Anokh Singh and A. K. Chhabra, Fundamentals of Digital Electronics and Microprocessors, 2nd Revised and Enlarged Ed., 2. Chand & Co. Ltd., New Delhi, 2005.
- 7. Floyd, *Digital Fundamentals*, Pearson Education, 8th Edition, S. Chand Publications, 2004.

(15 hours)

(15 hours)

• For Question paper pattern refer pg. no. 57

YEAR- III	Course Code: Title of the Paper: HRS/WK											CREDITS			
SEM- V	19	EPH51	в		NUMER		NETHODS	& BAS	IC		5	4			
					COMP	UTER	PROGRAM	MMING	i						
						ELEC	CTIVE-IB								
Course Outcor	nes											1			
CO1	To Le	arn the	e Solve	variou	ıs Funda	amenta	al mather	natical	equation	S					
CO2	To St	udy the	e functi	ons of	f Interpo	olation	methods	;							
CO3	Acqu	ring th	e know	vledge	about	Nume	rical integ	gration	& Differe	ntiation	l				
CO4	To Le	arn th	e Basic	of C L	anguag	е									
CO5	To Pr	o Procure the concepts of Control Statements in C Language													
		Mapping of course outcomes with the program specific outcomes													
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs Mean													
Outcomes		Score of													
Cos												CO's			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	1.1	3.8	1.1	3.4	3.5	3.4	4.3	4.6	3.2	3.3	2.1	3.07			
CO2	2.2	3.6	1.1	3.5	2.8	3.6	4.4	4.2	3.5	3.5	1.1	3.04			
CO3	2.1	3.7	1.1	3.1	3.3	3.3	4.1	4.8	3.3	3.6	1.1	3.04			
CO4	3.4	4.4	1.0	4.6	3.5	4.2	4.1	3.3	2.1	3.8	2.2	3.32			
CO5	3.6	4.0	1.0	4.7	3.6	4.0	4.3	4.5	2.0	4.4	2.1	3.47			
				Μ	ean Ove	erall So	ore					2.926			
			Res	ult: Tł	ne Score	e for th	nis course	is Moo	lerate						
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	81-3	100%			
Scale		-	1		2		3		4			5			
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0		3.1-4	.0	4.1	-5.0			
Quality		Very Poor Poor Moderate High Very High						Moderate High Very High							
	Value Scaling														
Mean Sco	ore of C	$Os = \frac{1}{Tot}$	Tota tal No.o	l Value f POs 8	s & PSOs		Mear	n Overa	ll Score c	of COs= $\frac{1}{2}$	Total Mean S Total No.of	Scores COs			

UNIT 1: SOLUTION OF EQUATION

Eigen values, Eigen vectors, CayleyHamilton; characteristic equation of a matrix –Solution of simultaneous equations – Gauss elimination method – Gauss-Jordan method.

UNIT 2: INTERPOLATION

Linear and Lagrange interpolation – Newton's forward & backward interpolation polynomial equation & determination of roots – Newton-Raphson method.

UNIT 3: NUMERICAL INTEGRATION AND DIFFERENTIATION (15 hours)

Trapezoidal rule – Simpson rule 1/3 & 3/8 – Solution of first & second order differential equation: Taylor series – Euler's method (Improved & Modified) – Solutions of forth order Runge-Kutta method.

UNIT 4: DATA TYPE OPERATORS

History & Features of C Language - Variable name – data type and sizes – declaration – arithmetic, relational and logical operators – precedence and order of evaluation.

UNIT 5: CONTROL STATEMENTS & IPR

Unconditional control statements – GOTO and labels – Conditional control statements – simple IF, IF..ELSE, nested IF..ELSE, ELSE IF ladder – switch case – break – continue statement. Looping statement – while – do..while – for – nested for loop – (**Basic Programs - Qualitative studies only)** - Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark

TEXT BOOKS

- 1. S.S. Sastry, Numerical Methods, Prentice Hall India Learning Private Limited; Fifth edition 2012.
- 2. Venkataraman, Numerical Methods, The National Publishing Company, Madras, 1999.
- 3. Thilagavathi, *Numerical Methods*, Published by S. Chand & Company Ltd., 2013.
- 4. Kandasamy, Numerical Methods, S Chand & Company; Reprint 6th Edition, 2006.
- 5. E. Balagurusamy, ANSI-C, McGraw Hill Education India Private Limited; Seventh Edition, 2016.

REFERENCE BOOKS

- 1. Satya Prakash, *Mathematical Physics*, 4th Ed., Sultan Chand & Sons Publication, New Delhi, 2014.
- 2. A. Singaravelu, Numerical methods, 1st Ed., Meenakshi Publication, Tamil Nadu, 2008.
- 3. Yeshwantkanitkar, Let us 'C', BPB Publications; Thirteenth Revised and Updated Edition, 2016.
- 4. Kuo-Addison, Numerical Methods and Computers, Wesely London, 1966.
- For Question paper pattern refer pg. no. 57

(15 hours)

(15 hours)

(15 hours)

YEAR- III	Course Code: Title of the Paper: HRS/WK									CREDITS		
SEM- V	19	EPH52	4			GEO	PHYSICS				5	4
						ELEC	TIVE-2C					
Course Outco	omes											
CO1	To kn	low the	inforn	natior	n about t	he eart	h and sol	ar syste	m			
CO2	To Le	o Learn the interpretation of Mathematical functions in geographical fields										
CO3	Obtai	btaining the knowledge about the Magnetic field on earth										
CO4	To Le	o Learn the concepts of Sesimology										
CO5	To Le	o Learn the basics of Geodynamics										
		Марр	ing of	cours	e outcor	nes wit	th the pro	ogram sj	pecific ou	utcomes		
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs Mean										
Outcomes												Score of
COs		CO's										CO's
	PO1	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6										
CO1	2.1	2.8	1.0	2.4	2.5	3.3	3.3	3.8	3.1	3.2	1.1	2.6
CO2	2.2	2.4	1.1	2.5	2.1	3.5	3.4	3.2	3.6	3.2	1.2	2.58
CO3	2.3	2.7	1.0	2.7	2.3	3.1	3.7	3.2	3.1	3.3	1.1	2.59
CO4	3.3	3.4	1.0	2.6	2.2	3.7	3.2	3.6	3.5	3.1	1.2	2.8
CO5	2.6	2.0	1.0	2.5	2.1	3.0	3.1	3.0	2.0	3.4	1.1	2.34
				Ν	/lean Ov	erall Sc	ore	•	•			2.582
			R	esult:	The Sco	re for t	his cours	e is Moo	lerate			
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	82	1-100%
Scale			1		2		3		4			5
Relation		0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0										1.1-5.0
Quality		Very	Poor		Poor		Moderat	e	High	า	Ve	ery High
						Value	Scaling	I				
Mean Sc	ore of	$COs = \frac{1}{T}$	Toto otal No.	al Valu of POs	ies : & PSOs		Mea	n Overal	l Score o	$f COs = \frac{T}{2}$	otal Mear Total No.c	n Scores of COs

UNIT 1: THE EARTH IN THE SOLAR SYSTEM

Solar System Formation, Accretion, and the Early Thermal State of the Earth-Rotation and Angular Momentum- The Sun-Planetary Formation-Early Thermal State of the Earth- Radioactive Decay-Radiometric Dating- Radioactivity as a Heat Source-Meteorites and the Bulk Composition of the Earth-Chondrites-Secondary Processing-Achondrites-Irons and Stony-Irons-The Terrestrial Planets-One-dimensional Earth's Structure-Lateral Heterogeneity in the Mantle

UNIT 2: THE EARTH'S GRAVITATIONAL FIELD

Global Gravity, Potentials, Figure of the Earth, Geoid-Gravitational Potential due to Nearly Spherical Body-The Poisson and Laplace Equations-Cartesian and Spherical Coordinate Systems-Spherical Harmonics-Global Gravity Anomalies- Gravity Anomalies and the Reduction of Gravity Data-Correlation between Gravity Anomalies and Topography-Flexure and Gravity.

UNIT 3: THE MAGNETIC FIELD OF THE EARTH

The Main Field-The Internal Field- The External Field-The Magnetic Induction due to a Magnetic Dipole-Magnetic Potential due to More Complex Configurations-Power Spectrum of the Magnetic Field-Downward Continuation-Secular Variation.

UNIT 4 :SEISMOLOGY

Introduction- Strain-Stress-Equations of Motion, Wave Equation, P and S-waves- From Vector to Scalar Potentials – Polarization-Solution by Separation of Variables- Plane Waves- Snell's Law-Fermat's Principle and Snell's Law- Ray Geometries of the Wave Field-Travel Time Curves and Radial Earth Structure-Surface Waves- Sensitivity Kernels-Excitation of Surface Waves-Dispersion: Phase and Group Velocity-Dispersion Curves- Seismology: Free Oscillation

UNIT 5: GEODYNAMICS

Heat Flow- Heat Flow, Geothermal Gradient, Diffusion-Thermal Structure of the Oceanic Lithosphere-Thermal Structure of the Oceanic Lithosphere (cont.)-Bending, or Flexure, of Thin Elastic Plate-The Upper Mantle Transition Zone.

Text Books:

- 1. Lowrie, William. Fundamentals of Geophysics. Cambridge, UK: Cambridge University Press, September 1997.
- 2. Fowler, C. M. R. The Solid Earth: An Introduction to Global Geophysics. Second Edition. Cambridge, UK: Cambridge University Press, 2004,
- 3. Stacey, F. D. Physics of the Earth. 3rd ed. Brisbane, Australia: Brookfield Press, 1992.
- 4. Sleep, Norman H., Kazuya Fujita, and K. Fujita. Principles of Geophysics. Malden, MA: Blackwell Science, 1997

Reference Books:

- 1. Turcotte, Donald L., and Gerald Schubert. Geodynamics. 2nd ed. Cambridge, UK: Cambridge University Press, 2001.
- 2. Stein, Seth, and Michael Wysession. An Introduction to Seismology, Earthquakes and Earth Structure. Malden, MA: Blackwell Science, 2002.
- 3. Anderson, Don. Theory of the Earth. Malden, MA: Blackwell Science, 1990.
- 4. Merrill, Ronald T., et al. The Magnetic Field of the Earth. Burlington, MA: Academic Press, September 15, 1998.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

• For Question paper pattern refer pg. no. 57

YEAR- III	Course Code: Title of the Paper: HF										S/WK	CREDITS		
SEM- V	19	EPH52	В		FIBER O	PTIC (co	MMUN	ICATIO	N		5	4	
						ELECTIVE- 2D								
Course Outcon	nes													
CO1	To ur	ndersta	nd the	basic	s of opti	ic fibe	rs							
CO2	To st	o study the information about the characteristics of fiber optics												
CO3	To O	o Obtain the knowledge about the Communication processes												
CO4	To st	udy the	e functi	ions o	of couple	ers and	d co	onnecto	ors					
CO5	Proc	uring th	ne func	tions	of Analo	og and	l Di	gital Lir	nks					
		Mapping of course outcomes with the program specific outcomes												
Course	Pro	Programme Outcomes POsProgramme Specific Outcomes PSOsMean												
Outcomes													Score of	
COs													CO's	
	PO1	PO2	PO3	PO4	1 PO5	PSO:	1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	2.1	3.8	2.0	3.5	2.2	4.6		3.2	3.4	4.3	3.4	2.1	3.14	
CO2	2.2	3.6	2.2	3.4	2.1	4.1		3.4	3.8	4.4	3.2	2.1	3.13	
CO3	2.3	2.2	2.4	3.3	2.2	4.4		3.4	3.7	4.6	3.3	2.1	3.08	
CO4	2.4	2.4	2.0	3.1	2.1	4.3		3.2	3.6	4.4	3.5	2.3	3.02	
CO5	2.6	2.4	2.4	2.8	2.4	4.7		3.3	3.8	3.1	3.8	2.1	3.18	
		1		N	lean Ove	erall S	icor	re			•		3.11	
			I	Result	t: The Sc	ore fo	or t	his cou	rse is H	igh				
Mapping		1-2	20%		21-40%	6		41-60%		61-80)%	81-	100%	
Scale			1		2			3		4			5	
Relation	0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0									1.1-2.0 2.1-3.0 3.1-4.0				
Quality		Very	ry Poor Poor Moderate High Very High								/ High			
	Value Scaling													
Mean Sco	re of C	$Os = \frac{1}{To}$	Tota tal No.o	l Value f POs d	es & PSOs			Mear	n Overal	l Score c	of COs= $\frac{2}{3}$	Fotal Mean S Total No.of	Scores COs	

UNIT - I: OPTIC FIBERS

Fiber optic revolution – basic characteristics of optical fiber – acceptance angle – numerical aperture - propagation of light through optical fiber - theory of mode formation - classification of fibers step index and graded index fibers - single mode and multi mode fibers

UNIT - II: TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS (15 hours)

Introduction, Attenuation, absorption, scattering losses, bending loss, dispersion, Intra model dispersion, Inter model dispersion.

UNIT - III: FIBER OPTIC COMMUNICATION

Source and detectors for fiber optic communication – Laser and LED – Analog and digital modulation methods - principle of optical detection - pin and APD photo detectors - Noise - Design consideration of a fiber optic communication system.

UNIT – IV: FIBER COUPLERS AND CONNECTORS

Introduction, fiber alignment and joint loss, single mode fiber joints, fiber splices, fiber connectors and fiber couplers.

UNIT - V : ANALOG AND DIGITAL LINKS

Analog links - Introduction, overview of analog links, CNR, multichannel transmission techniques, RF over fiber, key link parameters, Radio over fiber links, microwave photonics. Digital links -Introduction, point-to-point links, System considerations, link power budget, resistive budget, short wave length bandand transmission distance for single mode fibers, Power penalties, nodal noise and chirping.

TEXT BOOKS

- 1. R. Murugeshan, *Modern Physics*, S. Chand & Co., 2009.
- 2. Senthil Kumar, Engineering Physics, VRB Publishers Pvt. Ltd., 2013.
- 3. Senior, Optical Fiber Communications: Principles and Practice, 3e: Third edition, Pearson, 2010
- 4. Sarkar Subir Kumar, Optical Fibres and Fibre Optic Communication Systems S. Chand, 2010

REFERENCE BOOKS

- 1. John M. Senior, Optical Fiber Communications, Cambridge University Press, 1996.
- 2. Govind P. Agrawal, Fiber Optic Communication Systems, John- Willey & Sons, 2007.
- 3. P. K. Palanisamy, *Physics for Engineering*, Scitech publishing Pvt. Ltd., Chennai, 2009.
- For Question paper pattern refer pg. no. 57

(15 hours)

(15 hours)

(15 hours)

Syllabus 2020-2021

Physics

YEAR- III	Course Code:Title of the Paper:HRS/WK									CREDITS			
SEM- V		19SPH	51			ELECT	RICAL WI	RING			4	3	
					(Skill development course)								
Course Outco	mes									I			
CO1	To le	arn the	funda	ment	als of el	ectricit	y, electri	cal par	ameters a	and test	ing tool.		
CO2	Unde	erstand	differe	ent m	ethods	of elec	tricity ger	neratio	n and typ	es of m	otors.		
CO3	St	Study the electrical components, symbols, types of circuits and tools											
CO4	To St	o Study the various methods of joining conductors and electrical accessories											
CO5	Learr	earn the methods of wiring a house and industry and											
	To H	To Hands on training on house wiring and troubleshooting the electrical circuits and											
	appli	ppliances											
	1	Mappi	ng of c	ourse	outcon	nes wit	th the pro	ogram	specific o	utcome	s		
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs Mean											
Outcomes		Score of										Score of	
COs												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	3.3	4.6	3.1	4.6	3.2	4.6	4.7	4.4	4.7	4.5	3.4	4.10	
CO2	3.0	4.7	3.5	4.6	3.1	4.1	4.8	4.8	4.6	4.3	3.1	4.03	
CO3	3.1	4.6	3.6	4.7	3.2	4.2	4.6	4.7	4.8	4.8	3.1	4.12	
CO4	3.0	3.8	3.4	4.6	3.1	4.3	4.7	4.6	4.5	4.5	3.3	3.98	
CO5	3.0	4.1	3.6	4.8	3.0	4.7	4.4	4.9	4.1	4.7	3.5	4.07	
				Μ	ean Ove	erall Sc	ore					4.06	
				Resul	t: The S	core fo	or this co	urse is	High				
Mapping		1-2	.0%		21-40%	6	41-60%		61-80)%	8	1-100%	
Scale		-	1		2		3		4			5	
Relation	0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0									4.1-5.0			
Quality		Very	Very Poor Poor Moderate High Very High						ery High				
	·	Value Scaling											
Mean Sco	re of C	$Os = \frac{1}{Tot}$	Tota tal No.o	l Value f POs d	es & PSOs		Mea	n Over	all Score	of COs=	Total Mea Total No	n Scores .of COs	

Unit-I:ELECTRICITY GENERATION

Fundamentals of electricity - Current, Voltage, resistance - Ohm's law - Power -Kilowatt hour - Watt meter - Electrical measurements - Electric powergeneration by Thermal, hydro, atomic and nuclear methods - Batteries -Generators - Study of Generator.

Unit-II:ELECTRIC CIRCUITS AND DISTRIBUTION

Symbols of electrical parameters - Importance Series, Parallel connections -Ac and DC - Conductors - Inductor, Conductors -Inductor, Capacitor and transformer - Distribution methods - single phase and three phase - Star and elta connections - Rules of electric connections - SWG -Motors - Study of motor, series and parallel circuits.

Unit-III:ELECTRICAL WIRING -I

Tools - Methods of Joining conductors - House wiring methods - Gilt, woodcasing, Tough - Rubber sheathed, conduit or PVC pipe and concealed –Switches - ceiling roze - lamp holders, sockets - Fuse base - Distribution box–Trip switches - Earth connection -Experimental study of house wiring.

Unit-IV :ELECTRICAL WIRING - II

Main board preparation - Distribution - Cut - out preparation - Switch boardpreparation - Power factor -IEE regulations - Safety precautions –Testing the insulation -Experimental study of main, distribution and switchboards.

Unit-V:ELECTRICAL APPLIANCES & SAFETY PRECAUTIONS (12 Hours)

Tungsten - filament bulb - tube light -mercury and sodium vapour lamp -LED lamp - heater - iron box - table fan - ceiling fan - battery eliminator -electrical requirement to washing machine and refrigerator - procedure torectify the electrical faults in electrical appliances.

Safety precautions

Precautions in handling tools Electric shock-First aid on electric shock Precautions to be observed while installing different electric appliances in houses.

Textbook:

Course material prepared by the Department.

• For Question paper pattern refer pg. no. 57

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

YEAR- III		19SSPH52
SEMESTER - V	EVERYDAY PHYSICS	HRS/WK-0
SSC##		CREDIT-2

OBJECTIVES:

- To acquire the knowledge about the fundamental parameters in physics and to understand their applications in daily life.
- To understand the flow of heat and its transmission in different forms and to develops a scientific quest among students.
- > Transmission of sound waves, characteristics and their applications in human system.
- To discern the basic application of geographical physics, and their utilization in the field of Medication.
- > To comprehend the basic ideas of physics in space science and communication networking.

UNIT -I

Mechanics : Weight – Mass - Force – Laws of Motion-– Work - Energy – Power- Friction – Centre of Gravity – Torque – Momentum – Angular Momentum.

UNIT – II

Heat: Flow of Heat & Thermal Equilibrium(Applications – Riveting- bimetallic strip – Units of Heat energy – Transmission of heat – Conduction –Convection – Radiation –(Applications – Ocean Currents –Car Radiators – Ventilation – Wind system in atmosphere – Thermos flask).

UNIT –III

Sound & Optics: Sound waves – Doppler Effect –Power of Lens - Physics in the human body: The eyes as an optical instrument; vision defects; Rayleigh criterion and resolving power; sound waves and hearing; sound intensity; the decibel scale.

UNIT – IV

Geo & Medical Physics: Earthquake Richter scale - thunder and lightning - Lightning arrestors Cosmic showers - X-rays Ultrasound scan CT scan – MRI scan.

UNIT – V

Space science & Communication: Newton's law of gravitation - Weather forecasting and communication satellites – Indian Satellites- Electromagnetic spectrum- Radio Waves AM & FM transmission and reception.

Text Books:

- 1. University Physics by F. W. Sears, M. Zemansky, R. A. Freedman, and H. D. Young, PearsonEducation
- 2. Fundamentals of Physics by D. Halliday, R. Resnick, J. Walker, John Wiley & Sons
- For Question paper pattern refer pg. no. 57

YEAR- III		PHP505
SEMESTER V	PRACTICAL -V	HRS/WK-6
PRACTICAL -5		CREDIT-3

(Any Twelve of the Following)

- 1. Young's modulus Koenig's method non uniform bending
- 2. Newton's rings R1, R2 and μ of a convex lens
- 3. Spectrometer i i' curve
- 4. Spectrometer narrow angled prism μ of the prism.
- 5. Spectrometer Cauchy's constant
- 6. Construction of voltage regulator (2 Diodes)-Zener Diode
- 7. RC coupled single stage amplifier
- 8. Construction of a low range power pack- Two diodes
- 9. EMF of a thermocouple mirror galvanometer (or) table galvanometer
- 10. Potentiometer emf of a thermocouple.
- 11. BG comparison of EMFs
- 12. Potentiometer Conversion of galvanometer into voltmeter
- 13. BG Absolute Capacitance
- 14. BG comparison of capacitances BG absolute capacitance of a capacitor
- 15. BG comparison of Mutual Inductance.
- 16. Transistor characteristics CE mode.
- For Question paper pattern refer pg. no. 57

Physics

YEAR- III	Course Code: Title of the Paper: HRS/WK									CREDITS					
SEM- VI		19PH6	511		Relativ	/ity, Q	uantum N	Aecha	nics &		5	5			
					N	Mathematical methods									
Course Outco	mes														
CO1	To ur	ndersta	nd the	conc	ept of R	elativi	ty								
CO2	To Le	earn th	e princ	iples	& prope	erties o	of waves a	and ma	atter						
CO3	To kr	o know about the Schrodinger equations and its applications													
CO4	To st	o study the mathematical functions in physics													
CO5	To G	o Gain the knowledge about the special functions													
	1	Mapping of course outcomes with the program specific outcomes													
Course	Pro	gramn	ne Out	come	s POs	l	Programn	ne Spe	cific Outo	omes P	SOs	Mean			
Outcomes												Score of			
COs												CO's			
	PO1	PO2	PO3	PO4	PO5	PSO1	L PSO2	PSOS	B PSO4	PSO5	PSO6				
CO1	3.3	4.6	3.1	4.6	3.2	4.6	4.7	4.4	4.7	4.5	3.4	4.10			
CO2	3.0	4.7	3.5	4.6	3.1	4.1	4.8	4.8	4.6	4.3	3.1	4.03			
CO3	3.1	4.6	3.6	4.7	3.2	4.2	4.6	4.7	4.8	4.8	3.1	4.12			
CO4	3.0	3.8	3.4	4.6	3.1	4.3	4.7	4.6	4.5	4.5	3.3	3.98			
CO5	3.0	4.1	3.6	4.8	3.0	4.7	4.4	4.9	4.1	4.7	3.5	4.07			
			•	М	ean Ove	erall So	core	•				4.06			
				Resul	t: The S	core f	or this co	urse is	High						
Mapping		1-2	20%		21-40%	6	41-60%)	61-80)%	8	1-100%			
Scale			1		2		3		4			5			
Relation		0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0									4.1-5.0				
Quality		Very	Poor		Poor		Moderat	e	High	า	Ve	ery High			
	Value Scaling														
Mean Sco	re of C	$Os = \frac{1}{To}$	Tota tal No.o	l Value f POs	es & PSOs		Mea	n Over	all Score	of COs=	Total Mea Total No	in Scores .of COs			

UNIT - I : RELATIVITY

Frames of references – Michelson – Morley experiment – significance of negative result – postulates of special theory of relativity – Lorentz transformation equations – Length contraction – Time dilation – Relativity of simultaneity – Law of addition of velocities – variation of mass with velocity – relativistic kinetic energy equations - postulates of general theory of relativity - gravitational red shift.

UNIT - II WAVE MECHANICS

Matter Waves - de Brogile wavelength - wave velocity and group velocity - Heisenberg's Uncertainty principle - proof of Uncertainty principle for one dimensional wave packet - postulates of wave mechanics - properties of wave function - operator formalism (Basics only)-eigen functions – eigen values – expectation values.

UNIT - III : SCHRÖDINGER EQUATIONS AND ITS APPLICATIONS (15 hours)

Schrödinger equation – time dependent and time independent – application of Schrödinger equations – linear harmonic oscillator – zero point energy – particle in a one dimensional box – barrier penetration and tunneling effect rigid rotator – hydrogen atom.

UNIT - IV : MATHEMATICAL PHYSICS

Gauss divergence theorem - stokes theorem - Greens theorem - applications of vectors to hydrodynamics.

Spherical polar coordinates – expressions for gradient, div in Cartesian & spherical coordinates.

UNIT - V : SPECIAL FUNCTIONS

Beta and gamma functions- relation between them - harmonics-Bessel's differential equations -Legendre's differential equations – Hermite's differential equations – Laguerre's differential equations - series solutions.

TEXT BOOKS

- 1. V. Devanathan, *Quantum Mechanics*, Narosa, Chennai, 2005.
- 2. R. Murugeshan, Kiruthigs, Sivaprasath, *Modern Physics*, S Chand & Co., 2007.
- 3. V. K. Thangappan, Quantum Mechanics, Wiley Eastern, 1985.
- 4. P. M. Mathews and Venkatesan, A Text Book of Quantum Mechanics, McGraw Hill, 1978.
- 5. Sathya Prakash, *Mathematical Physics*, Sultan Chand & Sons, 6th Revised Edition Reprint 2014.
- 6. R. Murugeshan, *Mechanics and Mathematical Methods*, S Chand Publishing & Co., 2015.

REFERENCE BOOKS

- 1. B. D. Gupta, Mathematical Physics, Vikas Publishing House; Fourth Edition, 2009.
- 2. Ghatak and Loganathan, *Quantum Mechanics*, McMillan, 2004.
- 3. A. Ghatak, Basic Quantum Mechanics, McMillan India, 2002.
- 4. Murray Spiegal, Introduction to Boundary Value Problems (Scahaum's Series), McGraw-Hill Education; 1st Edition, 1974.
- 5. Mathews P.M and Venkatesan, Quantum Mechanics, Tata McGraw Hill.1977
- 6. Feynmann Lectures, Quantum Mechanics, Vol. III. 2013
- For Question paper pattern refer pg. no. 57

Physics

(15 hours)

(15 hours)

Syllabus 2020-2021 Physic											hysics	
YEAR- III	C	ourse C	ode:			Title o	of the Pa	per:		HRS	S/WK	CREDITS
SEM- VI		19PH6	512		NUCL	EAR &F	RADIATIO	ON PHYS	5	5		
Course Outco	mes			I								
CO1	To understand the Basic concept Nuclear Structure											
CO2	To A	cquire l	knowle	edge a	bout R	adio Ac	tive Deca	ау				
CO3	Unde	erstand	ing the	e Cons	truction	n & Wo	rking of v	/arious	Particle /	Accelera	itors	
CO4	To st	udy the	e Work	ing of	Nuclea	r reacto	ors & Rad	diation				
CO5	To st	To study the Basic Classification of Elementary Particles										
Mapping of course outcomes with the program specific outcomes												
Course	Programme Outcomes POs Programme Specific Outcomes PSOs M										Mean	
Outcomes												Score of
COs	CO's									CO's		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	O2 PSO3 PSO4			PSO6	
CO1	3.2	4.3	3.1	4.1	3.0	4.5	4.5 4.5 4		4.7	4.6	3.8	4.02
CO2	3.1	3.9	3.3	4.2	3.1	4.7	4.5	4.8	4.3	4.4	3.7	4.00
CO3	3.0	4.6	3.1	4.5	3.0	4.1	4.4	4.7	4.5	4.5	3.6	4.17
CO4	3.4	3.8	3.2	4.5	3.1	4.5	4.8	4.3	4.7	4.6	3.6	4.04
CO5	3.5	4.5	3.2	4.8	3.7	4.8	4.9	4.9	3.8	4.8	3.4	4.20
				Me	ean Ove	erall Sco	ore					4.086
				Result	t: The S	core fo	r this co	urse is H	ligh			
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	8	1-100%
Scale		:	1		2		3		4			5
Relation	n 0.0-1.0 1.1-2.0 2.1-3.0 3.1								3.1-4	.0	1.1-5.0	
Quality		Very	Poor		Poor		Moderat	e	Higł	า	Ve	ery High
	I			1		Value S	Scaling	·				
$Mean Score of COs = \frac{Total Values}{Total No.of POS \& PSOs} Mean Overall Score of the second secon$										of COs=	Total Mea Total No	n Scores .of COs

Syllabus 2020-2021

UNIT - 1 : NUCLEAR STRUCTURE

Nuclear spin – determination of magnetic dipole moment, electric quadruple moment, parity of nuclei, isospin, theories of nuclear composition, proton and electron hypothesis, proton – neutron hypothesis, nuclear forces – meson theory of nuclear forces.

Liquid drop model – Bethe Weizacker's mass formula – application to alpha decay – Bohr – Wheeler theory - shell model - evidences - theory - energy level diagram - spin orbit interaction - magic numbers - nuclear stability.

UNIT - II : RADIOACTIVE DECAY

Radioactive disintegration - law of successive disintegration - transport and secular equilibrium radioactive series – Geiger – Nuttal law – Age of earth – alpha particle disintegration energy – alpha particle spectra – theory of alpha decay (Qualitative treatment). Beta ray spectra – origin – neutrino theory of beta decay – electron capture – gamma rays – determination of wavelength by Diamond – crystal spectrometer – nuclear isomerism.

UNIT - III : PARTICLE ACCELERATORS AND DETECTORS (15 hours)

Cyclotron – synchrocyclotron – Betatron – electron synchrotron – proton synchrotron (Bevatron)-GM counter - ionization chamber - bubble chamber - scintillation counter - photographic emulsion techniques.

UNIT - IV : REACTORS AND RADIATION PHYSICS

Nuclear fission – Chain reaction – four-factor formula – reactor theory – critical size of a reactor – general aspect of reactor design – reactor shielding – reactor control – classification of reactors – pressurized heavy water reactor - fast breeder reactor-Introduction to recent rectors.

Radiation hazards - biological effects of radiation - radiation sickness - radiation units and operational limits radiation survey meters - pocket dosimeter -control of radiation hazards radiation therapy – radioisotopes used for therapy – nuclear medicine – industrial applications – food preservatives.

UNIT - V : ELEMENTARY PARTICLES

Classification – types of interaction – symmetry and conservation laws – hadrons – leptons – baryons – mesons – strangeness – hyperons – antiparticles – antimatter – basic ideas about quarks – types of quarks.

TEXT BOOKS

- 1. Brijlal and N.Subramaniam-Modern Physics
- 2. D.C. Tayal, *Nuclear Physics*, Himalaya Publishing House, 2011.
- 3. R. Murugeshan, *Modern Physics*, S. Chand & Co., 2009.
- 4. R. Murugeshan&Kiruthiga, Sivaprasath, *Modern Physics*, S. Chand & Co., 2009.
- 5. Thayalan, Basic Radiological Physics, Jaypee Brothers Medical Publishers Pvt. Ltd, 1st Edition, 2009.

REFERENCE BOOKS

- 1. S. N. Ghoshal, *Nuclear Physics*, S Chand & Co. Edition, 2003.
- 2. M. L. Pandya, R.P.S. Yadav, Elements of Nuclear Physics, KedarNath& Ram Nath Publishers, 2000.
- 3. Irving Kaplan, *Nuclear Physics*, Narosa, 2002.
- 4. Nuclear Physics J B Rajam, S chand Publishing Co.
- 5. Littlefield & Thorley, *Atomic and Nuclear Physics*, Springer, 3rd Ed. 1979.
- For Question paper pattern refer pg. no. 57

Physics (15 hours)

(15 hours)

(15 hours)

YEAR-III	Cou	rse Co	de:		Ti	tle of th	ne Paper	•		HRS/	WK	CREDITS
SEM-VI	19	EPH63	Α		1	ASTROF ELECTI	HYSICS VE 3A			5		4
Course Outo	comes											
CO1	Study											
CO2	Learr	n the co	oncepts	s of ast	ronom	ical inst	rumenta	ation				
CO3	Acqu	ire Kno	wledge	e of Ste	ellar Ma	agnitud	es and C	olors				
CO4	Be fa	miliar	with th	e Stella	ar struc	ture						
CO5	Apply	y the ki	nowled	ge of S	Stellar e	evolutio	n					
	Mapping of course outcomes with the program specific outcomes											
Course	Programme Outcomes POs Programme Specific Outcomes PSOs									Mean		
Outcomes										Score of		
COs										CO's		
	PO1	PO2	PO3	PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6								
CO1	3	3.8	4	3.5	3.5	2.8	3.5	3	4	3	3.5	3.41
CO2	3.8	3.2	3	3	3.5	3.6	4	3.5	3	2.6	3.5	3.33
CO3	3.5	4	3.2	2.5	3	3	3	3.5	3.5	3	3	3.2
CO4	3	3.8	3	3.8	3	4	3	2.8	3.5	3	3.5	3.30
CO5	4	2.5	3.5	3	3.5	2.5	3.5	3	3	3	2.5	3.09
				Μ	ean Ov	erall Sco	ore					3.27
				Resul	t: The S	Score fo	or this co	urse is l	ligh			
Mapping		1-2	20%		21-40%	6	41-60%		61-80	1%	8	1-100%
Scale			1		2		3		4			5
Relation	0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4								4.1-5.0			
Quality	Very Poor Poor Moderate High Very H									ery High		
				•		Value	Scaling	·				
Mean Sc	ore of	$COs = \frac{1}{T}$	Tot otal No.	al Valu of POs	es & PSOs		Mear	n Overal	l Score c	of COs= $\frac{1}{2}$	Total Mea Total No	n Scores .of COs

UNIT I: ASTRONOMY

History of Astronomy Celestial Mechanics; Distances in Astronomy; Magnitude Scale; Color-indexSize and Time Scales

UNIT II: ASTRONOMICAL INSTRUMENTATION

Basic Optics; Optical Telescopes; Radio Telescopes; Infrared, Ultraviolet, X-ray, and Gamma-Ray Astronomy

UNIT III: STARS

Stellar Magnitudes and Colors, Brightness and distance, Luminosity, temperature and spectral class, the motion of stars relative to the Sun, the masses of stars,

UNIT IV : STELLAR STRUCTURE

Equations of Stellar Structure – Solutions to Equations of Stellar Structure, Toy Stellar Models: Homologous Stellar Models, the Radiative Stellar Envelope, and Fully Convective Stars with H~ Opacity, Observational Aspects of Stellar Atmospheres, Continuum Radiation, and Lines

UNIT V: STELLAR EVOLUTION

Stellar Clusters Evolution of massive stars, Supernovae, Gamma-Ray bursts White Dwarfs, Chandrasekhar Limit, Neutron Stars, Pulsars GTR, Black holes.

TEXT BOOKS:

- 1. Bradley Carroll & Dale Ostlie, An Introduction to Modern Astrophysics , 2006.
- 2. T Padmanabhan, Theoretical Astrophysics: Vol. I-II-III, Cambridge University Press (2005).
- 3. WM Smart and R M Greene, Textbook on Spherical Astronomy, Cambridge University Press (1986)Sixth Edition.
- 4. Frank Shu, The Physical Universe, University of California (1982).
- 5. Roy A E and Clarke D, Astronomy principles and Practice, Institute of Physics (2003) Fourth Edition.
- 6. Swapan K Saha, Diffraction-limited imaging with large and moderate telescopes, World Scientific, (2007).

REFERENCE BOOKS:

- 1. Chandrasekhar S, An Introduction to the Study of Stellar Structure, Dover Publications (1967).
- 2. Clayton D D, Principles of Stellar Evolution and Nucleosynthesis, University of Chicago Press(1983).
- 3. Kippenhahn and Weigert, Stellar Structure and Evolution, Springer (1990).
- 4. Binney, J. and Tremaine S., Galactic, Dynamics, Princeton University Press (1994).
- 5. Binney J, and Merrifield, Galactic Astronomy, Princeton University Press (1998).
- 6. K.D. Abhyankar, Astrophysics (Stars and Galaxies), Tata McGraw Hill (1992).
- 7. BaidyanathBasu, An Introduction to Astrophysics, Prentice Hall of India (2003).
- 8. Jayant V Narlikar, An Introduction to Cosmology, Cambridge University Press (2004).
- For Question paper pattern refer pg. no. 57

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

YEAR-III	Со	urse Coo	de:		Ti	itle of th	ne Paper	:		HRS/	WK	CREDITS	
SEM-VI	19	9EPH63	В	ENERGY PHYSICS FLECTIVE – 3F						5		4	
Course Out	comes	5											
CO1	Stud	Study about the Conventional Energy Sources											
CO2	Learn about the Non-Conventional Energy Sources												
CO3	Acqu	iire Kno	wledge	e of Bio	mass e	nergy							
CO4	Be fa	amiliar v	vith the	e Geotl	nermal	energy							
CO5	Appl	y the kr	owled	ge of E	nergy s	torage a	and impa	cts of N	on-conve	entional	energy		
	Mapping of course outcomes with the program specific outcomes												
Course	Programme Outcomes POs Programme Specific Outcomes PSOs									Mean			
Outcomes				Sco								Score of	
COs												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1 PSO2 PSO3 PSO4 PSO5				PSO6			
CO1	3.2	3.8	4.1	3.5	3	2.8	3.5	3.1	4	3	3.2	3.38	
CO2	3.5	3.2	3.2	3	3.5	3.6	4	3.6	3	2.6	3.8	3.36	
CO3	3.5	4.1	3.2	2.6	3	3.2	3	3.5	3.5	3.5	3	3.28	
CO4	3.2	3.8	3	4	3	4	3.5	2.8	3.5	3	3.6	3.4	
CO5	4	3.5	3.5	3.2	3.5	2.5	3.5	3	4	3	3.5	3.38	
				N	lean Ov	verall Sc	ore					3.36	
				Resu	lt: The S	Score fo	or this co	urse is l	ligh				
Mapping		1-2	20%		21-40%	6	41-60%		61-80	1%	8:	1-100%	
Scale			1		2		3		4			5	
Relation	0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0									1.1-5.0			
Quality		Very	Poor		Poor		Moderat	e	High	1	Ve	ery High	
						Value	Scaling						
Mean So	core o	f COs= -	Tot Total No	al Valu .of POs	es & PSOs		Mear	n Overa	l Score o	$f COs = \frac{T}{r}$	otal Mean Total No.c	n Scores of COs	

Syllabus 2020-2021

UNITI (15 hours) Conventional Energy Sources: World's reserve of commercial energy sources and their availability-various forms of energy- renewable and conventional energy systems- comparison and natural gas - availability -statistical details-applications- merits and demerits

UNIT II

Non-Conventional Energy Sources: Renewable energy sources- solar energy- nature of solar radiation- components-solar heaters- crop dryers- space cooling-solar ponds-solar cookers-water desalination- photovoltaic generation basics- merits and demerits of solar energy

UNIT III

(15 hours) Biomass energy-classification- photosynthesis- biomass conversion process- gobar gas plantswood gasification- ethanol from wood- advantages and disadvantages of biomass as energy source

UNIT IV

Geothermal energy- wind energy- ocean thermal energy conversion(OTEC)-energy from waves and tides(basic ideas, nature, applications, merits and demerits)

UNIT V

Energy storage and impacts of Non-conventional energy: Conversion of energy- patterns of energy consumption in domestic, industrial, transpotation, agricultural sectors- conservation principles in these sectors- energy crisis and possible solutions- energy options for the developing countries- energy storage and hydrogen as a fuel (basics)-impact due to nonconventional energy sources-global warming

TEXT BOOKS

1. Rajamaanar, 2004, Environmental Studies.

REFERENCE BOOKS

1. Sukhatme, Solar Energy, McGraw-Hill Inc., US, 2nd Revised Edition, 1997.

(15 hours)

Physics

(15 hours)

[•] For Question paper pattern refer pg. no. 57

YEAR- III		PHP606	
SEMESTER - VI	PRACTICAL-VI	HRS/WK-6	
PRACTICAL - 6		CREDIT-3	

(Any Twelve out of Sixteen can be selected)

- 1. Construction of a full wave rectifier-solid state using four diodes
- 2. 5V Ic regulated power supply characteristics
- 3. RC-coupled amplifier using transistor- Double stage(voltage gain and variation with load)
- 4. Hartley oscillator
- 5. Colpitt's oscillator
- 6. NAND, NOR universal gates
- 7. Half adder and Full adder mixture of gates
- 8. Half subtractor and Full subtractor- mixture of gates
- 9. Multiplexer and demultiplexer
- 10. Microprocessor programming 8-bit Addition and Subtraction.
- 11. Microprocessor programming 8-bit Multiplication and Division.
- 12. RS, D-flip flop, Clocked RS Flip flop using NAND gates only
- 13. Four bit ripple counter
- 14. Verification of De Morgan's theorem.
- 15. Basic logic gates using transistor –AND, OR & NOT gates.
- 16. OP AMP inverting-Non inverting-Summing-Difference amplifier-Voltage follower-Averager
- For Question paper pattern refer pg. no. 57

Syllabus 2020-2021

Physics

YEAR-II	Cou	irse Co	de:		Ti	tle of	th	e Paper	:			HRS/	WK	CREDITS
SEM- III &	API	H301/4	01		ļ	ALLIEI	D P	HYSICS				5		4
IV														
Course Outcomes														
CO1	Stud	Study about Bending of beams and sound												
CO2	Learı	n conce	epts of	Electr	icity and	d Mag	gne	tism						
CO3	Usin	g the co	ompute	ers an	d enjoy i	in the	e w	orld of I	nfor	mat	ion Tecł	nnology		
CO4	Be fa	miliar	with In	terfer	ence an	d opt	ica	lactivity	/					
CO5	Appl	y the ki	nowled	lge of	Quantu	m me	ech	anics an	d Ele	ectr	onics			
	1	Mapping of course outcomes with the program specific outcomes												
Course	Pro	Programme Outcomes POsProgramme Specific Outcomes PSOsMean											Mean	
Outcomes	Scor										Score of			
COs											CO's			
	PO1	PO2	PO3	PO4	PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6									
CO1	3	2.5	4.1	3.5 3 2.5 3 3.1 4 3.2 3.2							3.19			
CO2	3.3	3.2	3	3	3.5	2.8	3	4	3.	6	3	2.3	3.5	3.2
CO3	3.5	4.2	3.5	2.8	3	3.2	2	3.5	3.	5	3.7	4	3.2	3.46
CO4	3.2	3.8	3	4.2	3	3.5	5	3.5	2.	8	3.6	3.5	3.6	3.42
CO5	4.3	3.5	3.7	3.2	3.8	2.5	5	3.5	3.	2	4.3	3.2	3.5	3.51
				N	lean Ov	erall	Sco	ore						3.36
				Resu	lt: The S	Score	fo	r this co	urse	is H	ligh			
Mapping		1-2	20%		21-40%	6		41-60%			61-80	1%	8	1-100%
Scale	1 2 3 4 5											5		
Relation	0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0													
Quality	Very Poor Poor Moderate High Very High													
				1		Valu	ie S	caling						
Mean Sc	ore of	$COs = \frac{1}{T}$	Tot otal No	al Valı .of PO:	ues s & PSOs			Mear	n Ove	erall	Score c	of COs= $\frac{1}{2}$	Total Mea Total No	n Scores .of COs

UNIT- I: PROPERTIES OF MATTER & ACOUSTICS

Bending of beams: Non uniform bending-Torsion of a wire-Torsional pendulum.

Sound: Transverse vibrations of a stretched string- expression for the velocity of transverse wave – laws of transverse vibrations- A.C frequency measurement using sonometer- velocity of sound in a gas-Ultrasonics-production and uses.

UNIT- II: ELECTRICITY & MAGNETISM

Capacitor- energy of charged capacitors- loss of energy due to sharing of charges DC circuits – growth and decay of charge containing resistance and capacitor (RC) circuit & inductance and resistance (LR) circuit - potentiometer-measurement of internal resistance of a cell and unknown resistances – Moment, Tan C and pole strength of a magnet

UNIT- III: OPTICS

Interference-Wedge shaped film-Air wedge-Description- Test for Optical flatness of glass plate-Determination of diameter of a thin wire by air wedge-spherical aberration – minimizing spherical aberration by using two thin lenses in contact-chromatic aberration- achromatic combination of two thin lenses in contact- optical activity-specific rotatory power-polarimeter

UNIT- IV: RELATIVITY & QUANTUM MECHANICS

Elements of relativity and Postulates of theory of relativity- Lorentz transformation equationsderivation Addition of velocities-twin paradox Minkowski's four dimensional space. Quantum mechanics: De Broglie's waves - Uncertainty principle- postulates of wave mechanics- -Schrödinger's equation (Time dependent one dimensional) - application to a particle in a box.

UNIT- V: ELECTRONICS

FET-characteristics-parameters-FET as amplifier-IC-SSI LSI MSI-VLSI IC fabrication-Diode-flip flops-RS flip flops-D flip flops-JK flip flops .

Text Books

- 1. Principle of physics-BrijlalSubramaniyam
- 2. R. Murugesan, *Allied Physics*, S. Chand Publishing, 2005.
- 3. BrijlalSubramaniyam, *Text book of Sound*, Vikas Publishing, 2nd Revised Edition.
- 4. V.K.Metha.S Chand, *Principle of Electronics*, 7th Revised Edition, 2005.
- For Question paper pattern refer pg. no. 57

(15 hours)

(15 hours)

(15 hours)

(15 hours)

YEAR – II		APHP301/401
SEMESTER – III & IV	ALLIED PRACTICAL	HRS/WK - 3
ALLIED		CREDIT - 2

LIST OF PRACTICALS

(Any TEN out of the Thirteen experiments can be selected)

- 1. Determination of Young's modulus –non-uniform bending -Pin and microscope.
- 2. Determination of Rigidity modulus- Torsional pendulum (without masses).
- 3. Determination of Rigidity modulus Static torsion
- 4. Sonometer frequency of tuning fork.
- 5. Sonometer A.C frequency Steel and Brass wire.
- 6. Air wedge thickness of a wire.
- 7. Spectrometer Grating-Minimum deviation
- 8. Potentiometer Measurement of Internal resistance of a cell.
- 9. Figure of merit of a galvanometer (Table galvanometer).
- 10. Construction of AND, OR NOT gates using diodes and transistors.
- 11. NAND gate as a universal gate.
- 12. Field along the axis of a circular coil-deflection magnetometer- B_H and M- Tan C.
- 13. RS- Flip flop, Clocked RS Flip flops.
- For Question paper pattern refer pg. no. 57

Physics

YEAR-III	Cou	irse Co	de:		Ti	tle of tl	ne Paper	:		HRS/	WK	CREDITS
SEM-VI	19	9SPH61	L	BASIC COMPUTER LITERACY 4 (Skill development course)							3	
Course Outo	irse Outcomes											
CO1	Impart basic level appreciation programme for the common man											
CO2	Use the computer for basic purposes of preparing his personnel/business letters											S
CO3	Using	g the co	ompute	rs and	enjoy	in the w	vorld of I	nforma	tion Tecl	hnology		
CO4	Be fa	miliar	with ma	aking s	mall pr	esenta	tions					
CO5	Apply	y the ki	nowled	ge of C	Drigin s	oftware	e & Adob	e photo	shop			
	Mapping of course outcomes with the program specific outcomes											
Course	Pro	gramn	ne Outo	comes	POs	Pr	ogramm	ie Speci	fic Outc	omes PS	Os	Mean
Outcomes										Score of		
COs										CO's		
	PO1	PO2	PO3	PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6								
CO1	3.2	2.8	4.1	3.5	3	2.8	3.5	3.1	4	3.4	3.2	3.32
CO2	3.5	3.2	3	3	3.5	3.6	4	3.6	3	2.6	3.5	3.31
CO3	3.5	4.2	3.2	2.8	3	3.2	3	3.5	3.7	3.5	3.2	3.34
CO4	3.2	3.6	3	4	3	3.5	3.5	2.8	3.5	3.1	3.6	3.34
CO5	4.1	3.5	3.7	3.2	3.5	2.5	3.5	3	4.1	3.2	3.5	3.43
				M	ean Ov	erall Sc	ore					3.34
				Resul	t: The S	Score fo	or this co	urse is l	High			
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	8	1-100%
Scale			1		2		3		4			5
Relation	n 0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.									4.1-5.0		
Quality	Very Poor Poor Moderate High Very High										ery High	
	Value Scaling											
Mean Sc	ore of	$COs = \frac{1}{T}$	Tot otal No.	al Value of POs	es & PSOs		Mear	n Overal	l Score c	of COs= $\frac{1}{2}$	^r otal Mea Total No	n Scores .of COs

UNIT-I: COMPUTER , COMMUNICATIONS AND COLLABORATION (12 Hours)

Introduction - Components of Computer System -Concept of Hardware and Software -Application Software-Systems software-Concept of computing, data and information- Applications of IECT - e-governance - Connecting keyboard, mouse, monitor and printer to CPU - Checking power supply-Operating system -The User Interface -Task Bar-Icons-Menu-Running an Application. Introduction-Basics of E-mail- Using E-mails -Opening Email account-Mailbox: Inbox and Outbox -Creating and sending a new E-mail - Replying to an E-mail message -Forwarding an E-mail message -Sorting and Searching emails-document collaboration -Netiquettes

UNIT-II: UNDERSTANDINGWORD PROCESSING

Introduction-Opening Word Processing Package -Menu Bar-Using The Help -Using The Icons Below Menu Bar-Opening and closing Documents - Opening Documents- Save and Save as -Page Setup -Print Preview -Printing of documents -Text Creation and manipulation -Document Creation -Editing Text - Text Selection -Cut, Copy and Paste -Spell check-Thesaurus -Formatting the Text- Font and Size selection -Alignment of Text - Paragraph Indenting -Bullets and Numbering -Changing case -Table Manipulation -Draw Table -Changing cell width and height -Alignment of Text in cell -Delete / Insertion of row and column -Border and shading

UNIT-III: USING SPREAD SHEET

Introduction -Elements of Electronic Spread Sheet-Opening of Spread Sheet-Addressing of Cells-Printing of Spread Sheet-Saving Workbooks-Manipulation of Cells -Entering Text, Numbers and Dates -Creating Text, Number and Date Series- Editing Worksheet Data-Inserting and Deleting Rows, Column -Changing Cell Height and Width-Formulas and Function-Using Formulas-Function

UNIT-IV: MAKING SMALL PRESENTATIONS

Introduction - Using PowerPoint -Opening A PowerPoint Presentation - Saving A Presentation - Creation of Presentation-Creating a Presentation Using a Template-Creating a Blank Presentation-Entering and Editing Text-Inserting And Deleting Slides in a Presentation-Preparation of Slides-Inserting Word Table or An Excel Worksheet-Adding Clip Art Pictures-Inserting Other Objects-Resizing and Scaling an Object -Presentation of Slides-Viewing A Presentation-Choosing a Set Up for Presentation-Printing Slides And Handouts-Slide Show -Running a Slide Show-Transition and Slide Timings - Automating a Slide Show

UNIT-V: ORIGIN SOFTWARE & ADOBE PHOTOSHOP (12 Hours)

Origin 8-Data analysis and Graphing workspace-Workbook-Worksheet& Worksheets column-Importing and Exporting data-Graphing: Customizing and Formatting the graph-Fitting analysis Introduction to Adobe photoshop, creating and saving a document in photoshop, page layout and back ground ,ruler, paletts, tool box, ,saving files, reverting files, closing files. image size and resolution ,image editing, colour modes and adjustments , Zooming & Panning an Image,, , Rulers, Guides & Grids- Cropping & Straightening an Image,image backgrounds , working with pen tool, save and load selection-working with erasers-working with text and brushes-Colour manipulations: colour modes- Levels – Curves- Seeing Colour accurately - Patch tool – Cropping-Reading your palettes -Dust and scratches- Advanced Retouching- smoothing skin Layers: Working with layers- layer stylesopacity-adjustment layers

REFERENCE BOOKS:

- 1. Fundamentals of Computers by ReemaThareja from Oxford University Press
- Photoshop: Beginner's Guide for Photoshop Digital Photography, Photo Editing, ColorGrading & Graphic...19 February 2016 by David Maxwell

(12 Hours)

(12 Hours)

(12 Hours)

YEAR (Optional)		
SEMESTER (Optional)		HRS-30
VAC	APPLIANCES	

OBJECTIVES:

- > To learn the fundamentals of electricity, electrical parameters and testing tool.
- > To understand different methods of electricity generation and types of motors.
- > To Study the electrical components, symbols, types of circuits and tools
- > To Study the various methods of joining conductors and electrical accessories
- > To Learn the methods of wiring a house and industry
- > To Hands on training on house wiring and troubleshooting the electrical circuits and appliances

UNIT-I:WIRING

(4 Hours)

Wiring accessories

Types of wires-Types of switches-Other accessories like lamp holders, ceiling roses, sockets, fuses-Main boards, Distribution boards, Switch boards- Fuses and fuse materials- MCB & CBs.

Wiring tools and wire joints

Wiring tools-Wire joints- Soldering, taping and termination of wires/joints

Types of House Wiring

CTS wiring, Conduit wiring, Casing capping wiring- Comparison between different wiring methods

Wiring circuits

Simple lamp circuit and bedroom lighting circuits- Stair case wiring, series and parallel circuits-Fluorescent tube light circuit, flashers, moving lights and sodium vapor and mercury vapor lamp circuits Selection of number of sub circuits and selection of wires/cables

Earthing

Necessity of earthing definitions of fundamental terms in earthing like earth, earth lead, earth electrode, earth wire Types of earthing pipe earthing and plate earthing-Specifications of materials used for earthing Measurement of Earth resistance

Safety precautions

Precautions in handling tools Electric shock-First aid on electric shock Precautions to be observed while installing different electric appliances in houses

UNIT-II :SINGLE PHASE MOTOR AND APPLICATIONS (4 Hours)

Single Phase Motor and applications:

Principle and operation of Single phase Induction Motors- Types of 1-Ph Induction motor capacitor start -capacitor run and their applications

Three Phase Motor and applications:

Working principle of 3-Ph Induction motor- Relations between Ns, no. of poles and supply frequency- Star connection and delta connection-Motor rpm Starters for Induction Motors-Necessity of starter-D.O.L starter-Star/delta starter.

UNIT III - DOMESTIC APPLIANCES

(4 Hours)

Motorized appliances - Construction, working, troubleshooting of electric fans, ceiling fan, table fan - mixer, water pumps.

Heating appliances - Construction, working and troubleshooting of electric room heater, electric stove, Electric Rice cooker-Electric iron, geyser - Hair drier,

Other appliances - Refrigeration and Air conditioning–Basic concept-gas fill up and installation.

List of Experiments (2 Hours per Experiment)

1. Lamp circuits- connection of lamp and socket by separate switches in surface conduit wiring.

- 2. Practice on simple lamp circuits- connects two lamps in series/parallel in casing capping wiring. .
- 3. Preparation of main board/distribution board based on sub circuits.
- 4. A.C. Three Phase Starters like DOL, Star/Delta Starters.

5. Connecting, starting and running of the mixer motor and observe the current and speed at different loads.

6. Dismantling, re-assembling and troubleshooting of Ceiling fan.

- 7. Dismantling, re-assembling and troubleshooting of Florescent Tube.
- 8. Dismantling, re-assembling and troubleshooting of automatic electric iron.
- 9. Imparting Basic skills on re-winding the ceiling fan

YEAR- I	Cour	se Cod	e:		Title	e of t	he	Paper:				HRS/V	VK	CREDITS
SEM- I	3NPF	IEE		ELECTRICAL AND ELECTRONIC 3										3
				FUNDAMENTALS										
Course Out	comes	mes												
CO1	Stude	Students learn the knowledge of principles behind the electricity												
CO2	Stude	ents lea	rn to a	nalyz	e the fur	nctio	ns c	of series	and	par	allel circ	cuits		
CO3	Stude	ents un	derstar	nds th	ne flow o	falte	erna	ative cur	rent	t thr	ough th	e compo	onents	
CO4	Stude	ents lea	rn to io	dentif	fy the use	e of e	elec	tronic c	omp	one	nts in th	ne circui	ts	
CO5	Stude	ents ap	ply the	know	vledge of	felec	ctric	cal and e	elect	roni	c compo	onents i	n the cir	cuits
		Mappiı	ng of co	ourse	outcom	es wi	ith	the pro	gran	n sp	ecific ou	tcomes		
Course	Pro	gramn	ne Outo	utcomes POs Programme Specific Outcomes PSOs Mean									Mean	
Outcomes				Score									Score of	
Cos				CO's									CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1 PSO2 PSO3			03	PSO4	PSO5	PSO6		
CO1	4	4	3	4	4	3		5	5	5	4	3	5	3.98
CO2	3	5	3	5	4	3		5	4	1	4	5	3	4
CO3	4	4	4	5	3	4		4	4	1	5	3	3	3.91
CO4	4	5	5	4	3	4		4	5	5	5	4	4	4.26
CO5	4	4	3	5	5	4		5	3	3	5	5	4	4.27
		1	I	N	Aean Ove	erall	Sco	ore	I			I	I	4.08
			F	Result	t: The Sc	ore f	or	this cou	rse i	s Hi	gh			1
Mapping		Мар	ping		1-20%			21-40%			41-60	%	61	-80%
Scale		Sc	ale		1			2			3			4
Relation	Relation 0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0										1-4.0			
Quality		Qua	ality		Very Po	or		Poor			Moder	ate	I	ligh
		Value Scaling												
Mean Sc	ore of	$COs = \frac{1}{T}$	Tot otal No	al Vali of PO	ues s & PSOs			Mear	n Sco	ore c	of COs= ;	Tota Total No.	al Values of POs &	PSOs

Unit I- Basics of electricity

Voltage - Current Flow--Resistance-Ohm's Law -Resistors in Series- Resistor colour coding scheme Capacitor-Principle of a capacitor-Types and uses-Multimeter (Purpose and usage only)-Continuity test-Resistance measurement using multimeter-Test procedure for checking capacitors: Resistance measurement and Spark test.

Unit II –DC series and Parallel Circuit Fundamentals

DC Series circuit- Total resistance in a series circuit-voltage drop (IR drop)-Polarity of voltage drop-Resistors in series and voltage division technique-Short circuits & Open circuit in series connection-DC Parallel circuit-Total resistance in parallel circuit-Resistances in parallel and current division technique –Short circuit &Opens in parallel circuit

Unit III- AC concepts

Alternating emf-Alternating current-Concept of three phase AC-Line and Phase voltages- Electric power-Units of electric power – Kilo watt hour- Advantages of AC- Transformers (Principle only) - Circuit Breakers – types of circuit breakers- The MCB Circuit Breaker-Desirable Characteristics of Fuse elements, Types of Fuses -Protection against lightning -Lightning arresters.

Unit IV-Electronic devices and their applications

Diodes(Principle only)-Converting AC in to DC-Rectifiers (Principle only)-Zener diode(Principle only)-Voltage fluctuation and its effect-Voltage stabilizers(Principle only)-Testing diodes and Zener diodes using multimeter-Microphone(Principle only) -Amplification-Amplifiers(definition and use only)-Gain of amplifiers- Loud speaker(Principle only)- Solar cells(Principle only) - Integrated circuits –merits and limitations.

Unit-V- Introduction to Digital Electronics

Logic gates, Flip Flops, Encoder, Decoder, Multiplexer, De multiplexer, A/D, D/A converters, IC.

Book for study

- 1. Bernard Grob, Basic Electronics, 5th Edition, McGraw Hill Kogakusha Ltd., New Delhi.
- 2. R. S. Sedha, A Text Book of Applied Electronics, S. Chand & Company Ltd., New Delhi.
- 3. Maini A. K., Electronics & Communications simplified, Khanna Publisher, New Delhi, 1993.
- 4. Honest, Earl Boysen, Harry Kybett, Complete Electronics Self-Teaching Guide with Projects, John Wiley & Sons, 2012.

Books for reference

- 1. G. Randy Slone, Electricity and Electronics, McGraw Hill publishers, 2000.
- 2. Dale R. Patrick, Stephen W. Fardo, Electricity and Electronics Fundamentals, Fairmont Press, 2008.

UG THEORY EXAMINATION Continuous internal assessment (CIA) UG (25 marks)

• Two internal Examinations

• Assignment / Seminar

Attendance

Total

External Examination (75 marks)

Time: 3 Hours

Max. Marks: 75

Section – A (10 x 2 = 20) (Two questions [least of one problem] from each Unit)

Section – B (5 X 5 = 25)

(Answer all the questions)

(One question from each Unit; either or pattern; any one question should have problem in one

part)

Section C (3 X 10 = 30)

(Answer any Three Questions out of five)

(One Question from each unit and may have subdivisions; the sub divisions may have problems)

PRACTICAL EXAMINATION

Continuous internal assessment (CIA) (40 marks)

Based on the periodical evalu	uation of record &	
Experiments assessed by the	- 20 marks	
Model Practical	- 20 marks	
	External Examinatio	n (60 marks)
	m	
	Total Marks	: 60
•	 Experiment 	50 Marks
	10 Marks	

5 marks 5 marks

15 marks

25 marks