ST. JOSEPH'S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) **CUDDALORE-1**

PG & RESEARCH DEPARTMENT OF PHYSICS

B.Sc (Physics)

SYLLABUS 2020-2021

P.G. and Research Department of Physics **B.Sc Physics Curriculum Template**

Sem	Part	Subject Code	Subject Title	Hrs	Cr
	I	LT101T	Tamil- I/Hindi-I/French-I	4	3
	П	LE101T	English-I	4	3
	Ш	19PH101	Core Paper – I: Properties of matter	4	3
	Ш	19PH102	Core Paper – II: Mechanics	4	3
	Ш	PHP101	Core Practical – I	3	2
	Ш	AMT101Q	Allied Mathematics-I	8	6
	IV	19AEC101	AEC – English Communication*	1	1
	IV	VE101T	SEC- Value education	2	2
			Total	30	23
	- 1	LT202T	Tamil -II/Hindi-II/French-II	4	3
	П	LE202T	English-II	4	3
	Ш	19PH203	Core Paper – III : Thermal Physics	4	3
	Ш	19PH204	Core Paper – IV: Waves and Oscillations	4	3
I	Ш	PHP202	Core Practical – II	3	2
	Ш	AMT202T	Allied Mathematics-II	8	6
	IV	19AEC202	AEC- English Communication*	1	1
		EPD201T	SEC- Personality development	2	2
			Total	30	23
	I	LT303T	Tamil -III/Hindi-III/French-III	4	3
	П	LE303T	English-III	4	3
	Ш	19PH305	Core Paper – V: Electricity and Magnetism	4	3
	Ш	19PH306	Core Paper – VI: Basic Electronics	4	3
II	Ш	PHP303	Core Practical – III	3	2
	IV	ACH301S	Allied Chemistry	5	4
	Ш	ACHP301	Allied Chemistry Practical	3	2
	IV	EVS301S	SEC-Skill based course- Environmental science	3	3
			Total	30	23
	- 1	LT404T	Tamil -IV/Hindi-IV/French-IV	4	3
	П	LE404T	English-IV	4	3
	Ш	19PH407	Core Paper – VII: Atomic Physics	4	3
	Ш	19PH408	Core Paper – VIII: Applied Electronics	4	3
V	Ш	PHP404	Core Practical – IV	3	2
V	Ш	19ABC401	Interdisciplinary course(IDC)*- Biophysics	5	4
	Ш	19ABP401	Biophysics Practical	3	2
	IV	AOBM401	SEC-Skill based course - Business organization	3	3
			and Management	3	3
			Total	30	23
· <u> </u>	Ш	19PH509	Core Paper – IX: Optics & Spectroscopy	5	5
	Ш	19PH510	Core Paper – X: Solid state Physics	5	5
		19EPH51A	Elective 1A: Digital Electronics		
V	III	19EPH51B	Elective 1B: Numerical Methods & basic	5	4
			computer programming		
	III	19EPH52A	Elective 2C: Geophysics	5	4
		19EPH52B	Elective 2D:Fibre Optic Communication		

III	IV	3NPHEE	Electrical and Electronic Fundamentals	3	3
		All other disciplines except physics			
			Grand Total	180	140
	V	EU601	Extension activities		2
			Total	30	23
	IV	19SPH61	Skill development Course- Computer Literacy ^{\$}	4	2
	Ш	PHP606	Main Practical – VI	6	3
	Ш	JPH601	Elective 4: Project	5	4
VI	111	19EPH63B	Elective 3F:Energy Physics	<u> </u>	4
VI	Ш	19EPH63A	Elective 3E:Astrophysics	5	4
	Ш	19PH612	Core Paper – XII: Nuclear & Radiation Physics	5	5
	III	19PH611	Core Paper – XI: Relativity, Quantum Mechanics & Mathematical methods	5	5
		40011644	Total	30	23
	IV	19SSPH52	SSC ## (optional) Everyday Physics		2*
	IV	19SPH51	Skill development course- Electrical Wiring ^{\$}	4	2
	Ш	PHP505	Main Practical – V	6	3

Extra courses –given extra credits -SSC

##- ONLY INTERNAL

• READING, WRITING, LISTENING ORAL TEST COMPONENT EXERCISES ONLY. SEPARATE TEST BASED ON THE ABOVE COMPONENT TO BE TESTED

YEAR- I	Cour	se Cod	e:		Title	e of the	Paper:			HRS/	WK	CREDITS	
SEM- I	19	PH101		ı	PROPE	RTIES O	F MATT	ER		4		3	
Course Out	comes												
CO1	Learn	the ba	asics of	elasti	city an	d its im	oortance	in bea	ms				
CO2	Study	the c	oncept	s of E	lasticit	y and t	he vario	us metl	hods to	determ	ine the	parameter	
	expe	rimenta	ally										
CO3	Acqu	ire Kno	wledg	e of be	ending	of bear	ns						
CO4	Be fa	miliar v	with th	e surfa	ice ten	sion							
CO5	Study	udy the concepts of viscosity and surface tension and the various methods to											
	deter	termine the parameters experimentally											
		Mappi	ng of c	ourse	outcor	nes wit	h the pr	ogram s	pecific	outcom	es		
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs											
Outcomes												Score of	
Cos												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	4	3.8	4	3.5	3.5	3.8	3.5	3	4	3	4	3.65	
CO2	3.5	3	3.5	3	3.5	4	4	4	4	3	4	3.59	
CO3	3	3.5	3	4	3.5	3	3	3.5	4	3.5	3	3.36	
CO4	3	4	4	3	2	3.5	3.5	3.5	3.5	4	2.5	3.32	
CO5	4	4	4	3.5	4	4	3.5	4	4	3.5	2.5	3.73	
		J.		М	ean Ov	erall Sc	ore	Į.	1	I		3.53	
				Result	:: The S	core fo	r this co	urse isl	ligh				
Mapping		1-2	0%		21-40%	6	41-60%		61-80)%	81	L-100%	
Scale		1	<u>L</u>		2		3		4			5	
Relation	Relation 0.0-1.0 1.1-2					0 2.1-3.0 3			3.1-4	.0	.1-5.0		
Quality		Very	Poor		Poor	ľ	Moderat	е	High	1	Ve	ry High	
						Value S	Scaling				1		
Mean So	ore of	COs=	Tot	al Valu	Name (co	ing Vear Overal	Mean	Overall	Score o	f COs=	i Zotal Mea	n Scores	

UNIT- I: ELASTICITY-I (12Hours)

Hooke's law – stress – strain diagram – Modulus of elasticity - Relation between elastic constants – Poisson's ratio- Expressions for Poisson's ration in terms of elastic constants – work done in stretching of a wire and twisting a wire.

UNIT- II: ELASTICITY-II (12Hours)

Twisting couple on a cylinder – Torsional pendulum without mass– Rigidity modulus and moment of inertia – Rigidity modulus by static torsion - q, n and σ by Searle's method.

UNIT- III: BENDING OF BEAMS (12Hours)

Bending moment-Expression for Bending moment-Cantilever-Expression for depression at the loaded end of a cantilever-Experiment to determine Young's modulus by Cantilever depression(Pin and Microscope)-Cantilever Oscillations-Expression for time period- Experiment to determine Young's modulus by Cantilever Oscillations(Dynamic method)- Non-Uniform bending-Expression for depression at the mid point of a beam subjected to Non uniform bending- Experiment to determine Young's modulus by Non uniform bending (using pin & microscope)-Uniform bending- Expression for elevation at the mid point of a beam subjected to Uniform bending(using pin & microscope)-Experiment to determine Young's modulus by Koenig's method (Non-Uniform bending).

UNIT- IV: SURFACE TENSION (12Hours)

Molecular Interpretation - dimensions of surface tension – Excess of pressure over curved surfaces – Application to spherical and cylindrical drops and bubbles – Variation of surface tension with temperature – Jaeger's method.

UNIT- V: VISCOSITY (12 Hours)

Co-efficient of viscosity and its dimensions – Rate of flow of liquid in a capillary tube – Poiseuille's formula – Experiment to determine co-efficient of viscosity of a liquid(Constant volume method) – variation of viscosity of a liquid with temperature and pressure.

TEXT BOOKS:-

- 1. BrijLal, N. Subrahmanyam, Properties of Matter, S. Chand Publications, 2002.
- 2. Murugeshan .R, Properties of Matter and Acoustics, New Delhi, S. Chand & Co, 2006.
- 3. Mathur D.S., Elements of *Properties of matter*, S. Chand, 2006.

REFERENCE BOOKS:-

1. C.L. Arora, P.S. Hemine., *Physics for Degree students. First B.Sc Physics*, 2010.

YEAR- I	Cour	se Cod	e:		Title	e of the	Paper:			HRS/	WK	CREDITS	
SEM- I	19	PH102			r	NECHAI	NICS			4		3	
Course Out	comes											1	
CO1	Unde	rstand	the ba	sic ide	as of C	entre o	f Gravity	, Centr	e of Pres	ssure ar	nd Fluid d	lynamics.	
CO2	Unde	rstand	the va	rious	concep	ts of me	chanics	involve	d in Rigi	id bodie	!S.		
CO3	Acqu	ire the	conce	pts of	space	science							
CO4	Acqu	ire the	knowl	edge a	bout th	ne proje	ctile an	d friction	n				
CO5	Apply	the kr	nowled	ge to	the me	chanisn	n of syst	em of p	articles.				
		Маррі	ng of c	ourse	outcor	nes wit	h the pr	ogram s	pecific	outcom	es		
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs											
Outcomes												Score of	
COs												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	4	4	3.5	4	3.8	3.5	3	3.5	3.5	3.5	3	3.57	
CO2	2.5	4	3	4	4	3.5	3.5	3.5	4	4	3.5	3.59	
CO3	3.5	3.5	4	3.5	3.5	3.5	4	4	3.5	3	3.5	3.59	
CO4	3	4.5	3.5	4	3.5	4	3	3	3.5	4	3.5	3.59	
CO5	3	4	2.5	4	4	4	3.5	3.5	4	3.5	4	3.64	
				М	ean Ov	erall Sc	ore				<u>, </u>	3.60	
				Result	:: The S	core fo	r this co	urse is	High				
Mapping	;	1-2	20%		21-40%	6	41-60%	1	61-80)%	81	L-100%	
Scale		-	1		2		3		4			5	
Relation	0.0-1.0 1.1-2.0				2.1-3.0			3.1-4.0 4			4.1-5.0		
Quality		Very	Poor		Poor	Moderate High Very						ry High	
	,					Value S	Scaling	,			,		
Mean So	ore of		Tot otal No	al Valu	and the second	leg Vear Overal	Mean	Overal	Score o	of COs=	i Total Mea Total No.		

UNIT-I: STATICS, HYDROSTATICS AND FLUID MECHANICS

(12 hours)

Centre of gravity- Centre of gravity of a Solid cone- Centre of gravity of a Solid hemisphere-Thrust-Centre of pressure- Vertical rectangular lamina.

Equation of continuity of flow- Energy of the fluid- Euler's Equation of unidirectional flow - Bernoulli's theorem.

UNIT-II: MECHANICS OF RIGID BODIES

(12 hours)

Rigid body- Moment of inertia- Radius of gyration- moment of inertia of a solid cylinder, cylindrical shell, solid sphere, spherical shell - Bifilar pendulum- Compound pendulum-Determination of g and k.

UNIT-III: SPACE SCIENCE

(12hours)

Rockets and satellites - Basic principles of rocket motion - Rocket equation, Thrust and acceleration-Escape velocity of multistage rockets. Liquid, solid and cryogenic propellant rockets - Space shuttle-Orbital velocity - Launching of satellites - Types of satellite Orbits.

UNIT IV: PROJECTILES AND FRICTION

(12 hours)

Introduction to projectile motion-Projectile on an inclined plane -Friction- Laws of friction- Sliding friction - Angle of friction- Cone of friction- Equilibrium of a body on a rough inclined plane acted upon by an external force- Rolling friction and stability.

UNIT-V MECHANICS OF A SYSTEM OF PARTICLES

(12 hours)

Generalized Co-ordinates- transformation equations- configuration space- principle of Virtual work- D' Alembert's principle- Lagrange's equations and its applications.

TEXT BOOKS:-

- 1. Narayanamoorti and Nagarathnam, *Statics, Hydrostatics and Hydrodynamics*, National Publishing Company, III Edition, 1997.
- 2. Murugeshan, Mechanics and Mathematical Methods, S.Chand and Co., 2005.
- 3. Mathur. D.S., Mechanics, II Edition, S. Chand & Co., 2006.

4.

- 5. Gupta Kumar and sharma, Classical Mechanics, PragatiPrakashan,2001.
- 6. C.L. Arora, Mechanics, S. Chand Publishing, 2014.

- 1. Feynmann R.P, Leighton R.B and Sands M, The Feynmann Lectures on Physics, Vols 1, 2 and 3, Narosa, New Delhi, 1998.
- 2. Brijlal and Subramaniyam, Mechanics and Electrodynamics, S. Chand, KindleEdition, 2005.
- 3. Bhatia V.B., Classical Mechanics, Tamil Nadu Book House, 1997.
- 4. Charles Kittel, Walter Knight, MalvinRuderman, Carl Helmholz, Burton Moyer, Mechanics: Berkeley Physics Course, 2017.
- 5. SomnathDatta Sunil Dutta, Mechanics, Pearson, 2010
- 6. Herbert Goldstein, Classical Mechanics, Pearson, 2011.
- 7. Rana&Joag, Rana, Classical Mechanics, Tata McGraw-Hill Education, 2001.
- 8. David Kleppner, Robert Kolenkow, An Introduction to Mechanics, McGrawHill, 2017.
- 9. A. P. French, Newtonian Mechanics, Viva Norton Student Edition, 2011

YEAR – I		PHP101
SEMESTER – I	PRACTICAL – I	HRS/WK – 3
CORE – PRACTICAL - 1		CREDIT – 2

(Any nine out of the given 12 experiments)

- 1. Young's Modulus by Non-Uniform Bending Pin and Microscope
- 2. Young's Modulus by Non-Uniform Bending Optic Lever.
- 3. Rigidity modulus- Torsional Pendulum n of a wire (without masses)
- 4. Rigidity modulus -Torsional Pendulum n (with masses)
- 5. Sonometer Determination of Frequency of tuning fork.
- 6. Sonometer Determination of Specific Gravity of Solid and Liquid.
- 7. Surface tension by drop weight and Interfacial liquid– Drop Weight Method.
- 8. Comparison of Viscosity of two liquids
- 9. Focal Length and Refractive Index of Convex Lens (u-v method and conjugate foci methods for 'f' and Boy's method for R).
- 10. Spectrometer μ of the hollow Prism
- 11. Potentiometer Calibration of low range voltmeter.
- 12. Rigidity modulus by Static Torsion (mirror and telescope method).

YEAR- I	Cou	rse Co	de:		Ti	tle of th	ie Paper	:		HRS/	WK	CREDITS
SEM- II	19	9PH20	3		TH	IERMAL	. PHYSIC	S		4		3
Course Out	comes											
CO1	Acqu Entro		wledg	e of m	ethods	of hea	t transm	nission,	different	t types (of Heat 6	engines and
CO2	Unde	erstand	the na	iture a	nd the	kinetic t	heory o	f gases				
CO3	Unde	erstand	the di	fferent	metho	ds of lic	quefaction	on of ga	ses.			
CO4	Study	the co	oncept	s of lov	v temp	erature	physics,	refrige	ration ar	nd air co	nditionir	ng.
CO5	Unde	rstand	the co	ncepts	oflate	nt heat	and its	effect o	n boiling	point a	nd melti	ng point an
	the s	ignifica	nce of	Maxw	ell's th	ermody	namical	relation	s.			
		Марр	ing of	course	outco	mes wit	h the pr	ogram s	specific o	outcome	es	
Course	Pro	gramn	ne Out	comes	POs	Pr	ogramn	ne Speci	fic Outc	omes PS	SOs	Mean
Outcomes												Score of
COs										CO's		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4	3.5	4	3.5	4	3.5	4	4	3.5	3.5	3.5	3.73
CO2	3.5	4	4	3.5	4	3.5	4	3.5	4	3.5	2.5	3.64
CO3	4	4	3.5	4	3.5	4	3	3.5	3.5	3.5	4	3.68
CO4	3	4	3.5	4	3.5	4	4	3.5	3.5	3.5	4	3.68
CO5	4	4	3.5	3.5	4	4	3.5	4	3.5	3	3.5	3.68
		<u> </u>		М	ean Ov	erall Sco	ore					3.68
				Resul	t: The S	Score fo	r this co	urse is	High			
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	8:	1-100%
Scale			1		2		3		4			5
Relation	0.0-1.0 1.1-2.0				0 2.1-3.0 3.3			3.1-4	.0	4	4.1-5.0	
Quality		Very	Poor		Poor	r Moderate High Ve						ery High
						Value S	Scaling					
Mean So	ore of	COs= -	Tot	al Valu	VALEX.	ing Mear Overs	Mear	n Overal	l Score o	of COs=	I Eotal Mea	22. Scores

UNIT- I: HEAT AND THERMODYNAMICS (12 Hours)

HEAT: C_P , C_V and γ of a gas- Mayer's relation- Basics of Heat transfer: Conduction, Convection, Radiation- Mechanical equivalent of Heat.

THERMODYNAMICS: Reversible and irreversible processes – Heat engines – Otto and diesel engines – thermodynamic scale of temperature - entropy - change of entropy in reversible and irreversible processes – T-S diagram – entropy for a perfect gas - third law of thermodynamics

UNIT- II: KINETIC THEORY OF GASES

(12 Hours)

Expression for pressure - Transport phenomenon - expression for mean free path - thermal conductivity and diffusion of gases - distribution of molecular velocities - energy distribution function - Degrees of freedom - equipartition law of energy.

UNIT- III: Adiabatic and Isothermal changes and Liquefaction of gases (12 Hours)

Reversible adiabatic and isothermal changes— equations — Clement and Desormes method of determining C_p / C_v — Andrew's work on Co_2 — regenerative cooling — the Linde process — Liquefaction of air and hydrogen-Kamerlingh Onnes Cascade method for Liquefying Oxygen.

UNIT- IV: LOW TEMPERATURE PHYSICS

(12 Hours)

Helium – He I and He II – super fluidity - practical applications of low temperatures – refrigerating machines – electroflux refrigerator – Frigidaire – air conditioning machines – effects of CF_2 and CI_2 on Ozone layer.

UNIT- V: PHASE TRANSITION

(12 Hours)

First Latent heat equation (Clausius – Clapeyron equation), effect of pressure on melting and boiling point – second Latent heat equation - Maxwell's Thermodynamical relations—derivations.

TEXT BOOKS:-

- 1. Mathur D.S., Heat and Thermodynamics, S. Chand, 2014.
- 2. Narayanamoorthy Nand Nagarathinam N, Heat, National publishing Co, Chennai, Eight Edition, 1987.
- 3. Murugeshan.R., Thermal Physics., S. Chand & Co., 2009.
- 4. Brijlal and Subramanyam, Heat and Thermodynamics, S. Chand & Co., 2000.

- 1. Nelkon Parker, Advanced Level Physics, (Vol.V), Arnold Publication, Berkely Series, 1995.
- 2. Dr. Ilangovan and Dr.D. Jayaraman,, Thermal Physics, S. Chand & Co., 2014.

YEAR- I	Cou	rse Co	de:		Т	itle of th	ne Paper	:		HRS/	WK	CREDITS
SEM- II	19	9PH204	1		WAVE	S AND (OSCILLAT	TIONS		4		3
Course Out	comes											<u>J</u>
CO1	Acqui	ire kno	wledge	of Sim	ple Ha	rmonic I	Motion					
CO2	Unde	rstand	the cha	aracter	of Trai	nsverse	waves					
CO3	Unde	rstand	the ch	aracter	of Lon	gitudina	l waves	and Do	opler eff	ect		
CO4	Acqui	ire the	knowle	edge of	produ	ction, de	etection	and app	lications	of Ultra	sonics	
CO5	Acqui	ire kno	wledge	of Acc	ustics.							
		Марі	ping of	course	outco	mes wit	h the pr	ogram s	pecific o	utcome	S	
Course	Pro	gramn	ne Outo	comes	POs	Pı	rogramn	ne Speci	fic Outco	omes PS	Os	Mean
Outcomes												Score of
Cos											CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4	4	3.5	4	3.5	4	4	3.5	3.5	4	3.5	3.77
CO2	3.5	3.5	3.5	4	4	3.5	4	3.5	4	4	4	3.77
CO3	4	4	4	3.5	4	3.5	3.5	3.5	3.5	4	4	3.77
CO4	4	3.5	3.5	3.5	3.5	3	2.5	4	4	3.5	4	3.55
CO5	3.5	4	3.5	4	3.5	3.5	4	4	3.5	3.5	3.5	3.68
		1		N	lean Ov	erall Sc	ore			1		3.71
				Resu	lt: The	Score fo	r this co	urse is H	ligh			<u>J</u>
Mapping		1-2	20%		21-40%	6	41-60%	1	61-80)%	8:	1-100%
Scale			1		2		3		4			5
Relation	0.0-1.0 1.1-2)	2.1-3.0		3.1-4	.0	4	1.1-5.0
Quality		Very	Poor		Poor		Moderat	:e	High	า	Ve	ery High
						Value S	Scaling	1				
Mean S	core of		Tot Total No	al Valu of POs		Mean Over	Mear	n Overal	l Score o		otal Mear Total No.	

UNIT - I: SIMPLE HARMONIC MOTION

(12 Hours)

Simple harmonic motion— Velocity and acceleration in SHM — Energy of a simple harmonic oscillator (LC) —Examples of simple harmonic oscillators in electrical systems — Superposition of two SHMsof Equal time periods and acting at right angles to each other - Lissajous figures —Damped harmonic oscillations.

UNIT - II: TRANSVERSE WAVES

(12 Hours)

Introduction to transverse waves — Velocity of transverse waves in stretched string — Standing waves on a string-Determination of AC frequency using Sonometer (Steel wire)— Energy of a vibrating string — Standing wave ratio.

NIT - III: LONGITUDINAL WAVES

(12 Hours)

Introduction to longitudinal waves – Sound waves in gases – Energy distribution in sound waves – Intensity of sound waves – Longitudinal waves in a solid – Example: earthquake – Doppler Effect.

UNIT - IV: ULTRASONICS

(12 Hours)

Ultrasonics – Production of Ultrasonics: Piezo electric effect- Piezo electric crystal generator – Magnetostriction generator –Detection of ultrasonics –Thermal detectors – Piezo electric detectors - Applications of Ultrasonics- Ultrasound scan – NDT .

UNIT - V: ACOUSTICS (12 Hours)

Reflection and transmission of sound waves at boundaries – Diffraction of sound waves- Noise and music – Limits of human audibility – The decibel unit- Reverberation time-Sabine's formula for growth and decay – Acoustics of auditoriums and halls– Introduction to acoustic transducers.

Textbooks

- 1. H. J. Pain, ThePhysics of Vibrations and Waves, John Wiley, (2005), 6th Edition, for Units I, II & III.
- 2. N. Subrahmanyam, Brijlal, A Text Book of Sound, Second Edition, Vikas Publishing house PVT Ltd, 2016.

Reference Books

- 1. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley &Sons(2004), 7th Edition.
- 2. Berkeley Physics Course-Waves: Volume-III, McGraw Hill, (1969).
- 3. A. P. French, Vibrations and Waves (M.I.T Introductory Physics Series), CRC Press, (1971).
- 4. Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens and James V. Sanders, Fundamentals of Acoustics, John Wiley, (2000).
- 5. Richard P. Feynman, Robert B. Leighton, Matthew Sands, Feynman Lectures on Physics: The Definitive and Extended Edition. Addison-Wesley, (2005), 2nd Edition.

YEAR – I		PHP202
SEMESTER - II	PRACTICAL – II	HRS/WK - 3
CORE – PRACTICAL - 2		CREDIT - 2

(Any nine out of the given 12 experiments)

- 1. Young's Modulus by Uniform Bending Pin and Microscope
- 2. Young's Modulus by Uniform Bending Optic Lever.
- 3. Thermal Conductivity of the Bad Conductor Lee's Disc Method.
- 4. Specific heat capacity of liquid by method of mixtures (Half-time Correction).
- 5. Specific heat capacity of liquid by Newton's Law of cooling.
- 6. Spectrometer i-d Curve.
- 7. Focal Length R &μ of a concave lens.
- 8. Potentiometer Calibration of an Ammeter.
- 9. Sonometer Comparison of Linear Densities
- 10. Air wedge thickness of a wire
- 11. M and B_H TanC Deflection and vibration Magnetometer.
- 12. Figure of merit of a table galvanometer.

YEAR- II	Cou	rse Co	de:		Ti	tle of th	e Paper	:		HRS/	WK	CREDITS
SEM- III	19	9PH305	5	E	LECTRI	CITY AN	D MAGI	NETISM		4		3
Course Out	comes											
CO1	Unde	rstand	the co	ncepts	of Ele	ctrostat	ics and t	he laws	associat	ted with	them.	
CO2	Acqu	ire kno	wledge	e of cu	rrent e	lectricity	and the	ermoele	ctricity			
CO3	Unde	erstand	the gr	owth a	ınd dec	ay of ch	arge an	d currer	nt in DC	circuits.		
CO4	Unde	rstand	the ba	sics of	AC and	d Electro	magnet	ic induc	tion			
CO5	unde	rstand	the co	ncepts	of mag	gnetic p	ropertie	s matei	rials			
		Марр	ing of	course	outco	mes wit	h the pr	ogram s	pecific o	outcome	es	
Course	Pro	gramm	ne Outo	comes	POs	Pr	Os	Mean				
Outcomes												Score of
COs												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4.5	4.8	4	4.5	4	4	4.2	3.5	4	4.5	4	4.18
CO2	3	3.5	4	4.5	4	4	4	4	3.5	4	2.5	3.73
CO3	4	4	4.5	3.5	4	3.5	3	3	3.5	4	3.5	3.68
CO4	3.5	3	3	3.5	4	4.5	4	4	3.5	3	3.5	3.59
CO5	4	3	3	3.5	3	3	3.5	3.2	3	3	3	3.15
			L	М	ean Ov	erall Sco	ore		1			3.68
				Resul	t: The S	Score fo	r this co	urse is	High			
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	8	1-100%
Scale		:	1		2		3		4			5
Relation	elation 0.0-1.0 1.1-2				1.1-2.0	0 2.1-3.0			3.1-4	.0	4	1.1-5.0
Quality		Very	Poor		Poor	ı	Moderat	e	High	า	Ve	ery High
	l			I		Value 9	Scaling	I			1	
Mean Sc	ore of		Tot otal No.	al Valu of POs		ing Near Overs	Mear	o Overal	l Score c	of COs=	i Eotal Mea Total No	

UNIT I ELECTROSTATICS

(12 hours)

Coulomb's law – electric intensity and electric potential – electrical images (any four examples) - electric intensity and potential due to an earthed conducting sphere applying the principle of electrical images-capacity – capacitance of a spherical and cylindrical capacitor – energy of a charged capacitor – loss of energy due to sharing of charges

UNIT II CURRENT ELECTRICITY (12 hours)

Carey foster bridge - theory - Determination temperature co-efficient of resistance - Calibration of voltmeter - Ammeter - Using Potentiometer - thermoelectricity- Peltier's coefficient - Thomson coefficient - application of thermodynamics to a thermocouple and connected relations-thermoelectric diagram and uses.

UNIT III TRANSIENT CURRENT

(12 hours)

Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitor-Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – frequency of oscillation.

UNIT IV A.C AND ELECTROMAGNETIC INDUCTION (

(12 hours)

Power in AC circuit – wattless current- choke coil –construction and working of transformers- energy losses -single phase, and three phase AC – star and delta connection –electric fuses- circuit breakers. Self Inductance-Mutual Inductance-Inductances in series and parallel-Self-inductance of coaxial cylinders.

UNIT V MAGNETIC PROPERTIES OF MATERIALS (12 hours)

Susceptibility- permeability- intensity of magnetization and the relation B= u(H+M), M-H and B-H curves for a magnetic material using magnetometer method and ballistic galvanometer method – Terrestrial magnetism – magnetic elements- dip circle.

TEXT BOOKS:

- 1. Murugeshan R, Electricity and Magnetism, 8th Edition, New Delhi, S. Chand & Co., 2006.
- 2. Brijlal and N. Subramanian, Electricity and Magnetism, 6th Edition, Agra, Ratan& PrakashNarayanamoorthy M, Nagarathnam N, *Electricity and Magnetism*, 4th edition, Meerut, National Publishing Co.
- 3. Tewari. K. K, Electricity and Magnetism, 3rd Edition, New Delhi, S. Chand & Co., 2001.
- 4. Arora C.L., *Electricity and Magnetism*, S. Chand Publishing, 2014.
- 5. Mathur D.S., *Electricity and Magnetism*, 12th Edition, S. Chand.

- 1. David J Griffith, *Introduction to Electrodynamics*, 2nd Edition, New Delhi, Prentice Hall of India Pvt. Ltd, 1997.
- 2. Sehgal D.L, Chopra K. L and Sehgal N. K, *Electricity and Magnetism*, New Delhi, Sultan Chand & Co.,

YEAR- II	Cou	rse Co	de:		Ti	tle of th	ne Paper	:		HRS/	WK	CREDITS
SEM- III	19	9PH306	5		ВА	SIC ELE	CTRONIC	CS		4		3
Course Out	comes											
CO1	Unde	rstand	the co	ncept (of Diod	es and i	ts chara	cteristic	S			
CO2	Unde	rstand	the ch	aracte	istics c	of transis	stors					
CO3	Acqu	ire the	knowle	edge of	variou	ıs oscilla	tors					
CO4	Unde	rstand	the wa	eve sha	ping ci	rcuits ar	nd multi	vibrato	`S			
CO5	Acqu	ire the	knowle	edge of	variou	ıs applic	ations o	f electro	nics			
		Марр	ing of	course	outcor	nes witl	h the pro	ogram s	pecific c	utcome	es	
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs										
Outcomes								Score of				
COs												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	4	3.5	3.5	3.5	4	3.5	4	4	3	3	3	3.55
CO2	4	3.5	2.5	4	3.5	4	3.5	3.5	3	3	4	3.50
CO3	3.5	4	3.5	4	4	4	4.5	3.5	3.5	3.5	3.5	3.77
CO4	3.5	3.5	4	3.5	4	3.5	4	4	3	3.5	3.5	3.64
CO5	4	4	4	4	3.5	3	4	3.5	3	3.5	3.5	3.64
		1	I	М	ean Ov	erall Sco	re	<u>J </u>	I	I	1	3.62
				Result	t: The S	core fo	r this co	urse is H	ligh			
Mapping	5	1-2	20%		21-409	6	41-60%	•	61-80)%	83	1-100%
Scale		,	1		2		3		4			5
Relation	0.0-1.0 1.1-2.0)	2.1-3.0			3.1-4.0			
Quality		Very	Poor		Poor	r Moderate High V						ery High
						Value S	caling					
Mean S	core of		Tot otal No	al Valu		ang Mean Overa	Mear	o Overal	l Score c	of COs=	Total Mea Total No.	

UNIT – I: DIODES AND ITS APPLICATIONS

(12 hours)

PN junction diode - Half-wave, full-wave and bridge rectifier – expression for efficiency and ripple factor – π section filter – Zener diode – Zenerregulated power supply.

UNIT -II:TRANSISTOR BIASING AND TRANSISTOR AMPLIFIERS

(12 hours)

Different modes of operation —biasing and characteristics of a transistor in CE mode-h Parameters of CE mode- α and β of a transistor — Potential divider bias-Double stage RC coupled amplifier — frequency response curve— classification of amplifiers — class A power amplifier — Push-pull, class B power amplifier — Emitter follower.

UNIT –III: OSCILLATORS (12 hours)

Voltage gain of a feedback amplifier – Barkhausen criterion – Hartley, Colpitt's, and Phase shift oscillators– expression for frequency of oscillations and condition for sustained oscillations in each case– frequency stability.

UNIT -IV: WAVE SHAPING CIRCUITS AND MULTI VIBRATORS

(12 hours)

Clipping and clamping circuits – integrating and differentiating circuits – RC time constants. Multivibrators – Astable, – Mono stable and bi-stable multivibrators – Schmitt trigger

UNIT –V: TESTING ELECTRONIC COMPONENTS

(12 hours)

Testing various cables, connectors and fuses (Continuity test using multimeter)- Identifying, finding values and testing different types of resistors and Capacitors(by colour codes & multimeter)- Identifying (leads & type) and Testing Diodes, Zener diodes and Transistors(using multimeter) - Testing IC's.

TEXT BOOKS

- 1. B.L. Theraja, *Electronics*, S. Chand Publishing, 2005.
- 2. V. K Mehta, *Principles of Electronics*, S. Chand & Co., 2005.
- 3. M.K. Bagde, S. P. Singh, *Elements of Electronics*, S. Chand Publishing, 2000.
- 4. K.V. Ramanan, Functional Electronics, McGraw-Hill Inc., US, 1984.
- 5. B. Grob, *Basic Electronics*, McGraw Hill Education, 12th Edition.
- 6. M. Arul Thalapathi, Basic and Applied Electronics, Comtek publisher, 2005.

- 1. A. Malvino, *Electronics Principles*, McGraw Hill Education, 7th Edition, 2006.
- 2. Allen Mottershed, Electronic Devices and Circuits, Goodyear Pub. Co., 1973.
- 3. Manna, Solid state electronics, Tata McGraw Hill
- 4. R.S. Sedha, *Applied Electronics*, S. Chand & Company Ltd; 2nd New Edition, 2000.

YEAR – II		PHP303
SEMESTER – III	Practical - III	HRS/WK - 3
CORE – PRACTICAL – III		CREDIT - 1

(Any nine out of the given 12 experiments)

- 1. Compound Pendulum
- 2. Bifilar Pendulum
- 3. Field along the axis of Circular Coil B_H
- 4. Young's modulus- Cantilever oscillations(Dynamic method) -Pin and microscope.
- 5. Young's modulus-Cantilever Depression scale and telescope
- 6. Sonometer -ac frequency using steel wire
- 7. Sonometer -ac frequency using brass wire
- 8. Spectrometer-grating-normal incidence method
- 9. Spectrometer-grating-minimum deviation method
- 10. Surface Tension of the Liquid Capillary Rise Method
- 11. Young's Modulus by Koenig's method(Non-Uniform Bending)
- 12. Potentiometer- Resistance- Specific Resistance of a wire

YEAR-II	Cou	rse Co	de:		Ti	tle of th	e Paper	:		HRS/	WK	CREDITS
SEM- III	A	PH301	-		,	ALLIED F	PHYSICS			5		4
Course Out	comes											
CO1	unde	rstand	the pr	operti	es of n	natter &	z acoust	tics				
CO2	unde	rstand	the el	ectrici	ty & n	nagnetis	sm in el	ectrical	l circuit			
CO3	unde	rstand	the pr	incipa	l of op	tics and	d applic	ations				
CO4	Occi	ır the l	oasic k	nowle	dge of	relativ	ity & q	uantum	mecha	nics		
CO5	Expl	ain the	e vario	us ele	ctric IC	in ele	ctrical c	circuit				
		Марр	ing of	course	outco	nes wit	h the pr	ogram s	pecific o	outcome	es	
Course	Pro	gramm	ne Out	comes	POs	Pr	ogramm	ne Speci	fic Outc	omes PS	Os	Mean
Outcomes												Score of
COs												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3	2.5	4.1	3.5	3	2.5	3	3.1	4	3.2	3.2	3.19
CO2	3.3	3.2	3	3	3.5	2.8	4	3.6	3	2.3	3.5	3.2
CO3	3.5	4.2	3.5	2.8	3	3.2	3.5	3.5	3.7	4	3.2	3.40
CO4	3.2	3.8	3	4.2	3	3.5	3.5	2.8	3.6	3.5	3.6	3.42
CO5	4.3	3.5	3.7	3.2	3.8	2.5	3.5	3.2	4.3	3.2	3.5	3.52
				M	ean Ov	erall Sco	ore					3.36
				Resul	t: The S	Score fo	r this co	urse is I	High			
Mapping		1-2	20%		21-40%	6	41-60%	1	61-80)%	8	1-100%
Scale			1		2		3		4			5
Relation	0.0-1.0 1.1-2.				0 2.1-3.0			3.1-4.0			1.1-5.0	
Quality		Very	Poor		Poor	ſ	Moderat	e	High	n	Ve	ery High
						Value 9	Scaling					
Mean So	core of		Tot otal No	al Valui		ong Mean Overs	Mear	n Overal	l Score c	of COs=	l Eotal Mea Total No.	

UNIT- I: PROPERTIES OF MATTER & ACOUSTICS

(15 hours)

Bending of beams: Non uniform bending-Torsion of a wire-Torsional pendulum.

Sound: Transverse vibrations of a stretched string- expression for the velocity of transverse wave – laws of transverse vibrations- A.C frequency measurement using sonometer- velocity of sound in a gas-Ultrasonics-production and uses.

UNIT- II: ELECTRICITY & MAGNETISM

(15 hours)

Capacitor- energy of charged capacitors- loss of energy due to sharing of charges DC circuits – growth and decay of charge containing resistance and capacitor (RC) circuit & inductance and resistance (LR) circuit - potentiometer-measurement of internal resistance of a cell and unknown resistances – Moment, Tan C and pole strength of a magnet

UNIT- III: OPTICS (15 hours)

Interference-Wedge shaped film-Air wedge-Description- Test for Optical flatness of glass plate-Determination of diameter of a thin wire by air wedge-spherical aberration — minimizing spherical aberration by using two thin lenses in contact-chromatic aberration- achromatic combination of two thin lenses in contact- optical activity-specific rotatory power-polarimeter

UNIT- IV: RELATIVITY & QUANTUM MECHANICS

(15 hours)

Elements of relativity and Postulates of theory of relativity- Lorentz transformation equations-derivation Addition of velocities-twin paradox Minkowski's four dimensional space.

Quantum mechanics: De Broglie's waves - Uncertainty principle- postulates of wave mechanics- - Schrödinger's equation (Time dependent one dimensional) - application to a particle in a box.

UNIT- V: ELECTRONICS

(15 hours)

FET-characteristics-parameters-FET as amplifier-IC-SSI LSI MSI-VLSI IC fabrication-Diode-flip flops-RS flip flops-D flip flops-JK flip flops .

Text Books

- 1. Principle of physics-BrijlalSubramaniyam
- 2. R. Murugesan, Allied Physics, S. Chand Publishing, 2005.
- 3. BrijlalSubramaniyam, *Text book of Sound*, Vikas Publishing, 2nd Revised Edition.
- 4. V.K.Metha.S Chand, *Principle of Electronics*, 7th Revised Edition, 2005.

YEAR – II		APHP301/401
SEMESTER – III & IV	ALLIED PRACTICAL	HRS/WK - 3
ALLIED		CREDIT - 2

LIST OF PRACTICALS

(Any TEN out of the Thirteen experiments can be selected)

- 1. Determination of Young's modulus –non-uniform bending -Pin and microscope.
- 2. Determination of Rigidity modulus- Torsional pendulum (without masses).
- 3. Determination of Rigidity modulus Static torsion
- 4. Sonometer frequency of tuning fork.
- 5. Sonometer A.C frequency Steel and Brass wire.
- 6. Air wedge thickness of a wire.
- 7. Spectrometer Grating-Minimum deviation
- 8. Potentiometer Measurement of Internal resistance of a cell.
- 9. Figure of merit of a galvanometer (Table galvanometer).
- 10. Construction of AND, OR NOT gates using diodes and transistors.
- 11. NAND gate as a universal gate.
- 12. Field along the axis of a circular coil-deflection magnetometer-B_H and M- Tan C.
- 13. RS- Flip flop, Clocked RS Flip flops.

YEAR- II	Course Code: Title of the Paper: HRS/WK													
SEM- IV	19	9PH407	7		A	томіс	PHYSICS	5		4		3		
Course Out	comes													
CO1	Acqu	Acquire knowledge through discharge phenomenon through gases												
CO2	Get t	Get the basic knowledge of atomic structure												
CO3	Acqu	Acquire knowledge ionization potential and splitting of energy levels												
CO4	Unde	Understand the concept of photoelectricity and verifications by experiments.												
CO5	Unde	Understand the production and properties of X-rays.												
		Марр	ing of	course	outco	mes wit	h the pr	ogram	specific	outcom	es			
Course	Pro	gramn	ne Out	comes	POs	Pr	ogramn	ne Speci	fic Outc	omes PS	SOs	Mean		
Outcomes														
COs														
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	3	3.5	3	3.2	3.5	4	3	3	3.5	3.5	4	3.38		
CO2	4	4	3.5	4	4	4	2.5	3.5	4	3.5	4	3.73		
CO3	4	3.5	4	3.5	3	3.5	4	4	4	3	3.5	3.64		
CO4	3.5	3.5	4	3.5	3.5	3.5	4	3.5	3.5	3.5	3.5	3.59		
CO5	4	4	3.5	3.5	4	4	3.5	4	4	3.5	3	3.73		
]	Mean C	overall S	core		I	I		3.61		
				Resul	t: The	Score fo	r this co	urse is	High					
Mapping		1-2	20%		21-40%	6	41-60%	•	61-80	0%	8:	1-100%		
Scale			1		2		3		4			5		
Relation	0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0											1.1-5.0		
Quality	Very Poor Poor Moderate High V											ery High		
						Value :	Scaling							
Mean So	ore of	COs=	Tot	al Valu	Value to	ing Most Overa	Mear	n Overal	l Score d	of COs=	Lotal Mea	n Scores		

UNIT I: DISCHARGE PHENOMENON THROUGH GASES (15 hours)

Motion of a charge in transverse electric and magnetic fields – specific charge of electron – Dunnington's method – Magnetron method – positive rays – Thompson parabola method – Aston and Dempster's mass spectrograph.

UNIT II: ATOMIC STRUCTURE

(15 hours)

Vector atom model – Pauli's exclusion principle – explanation of periodic table – various quantum numbers – angular momentum and magnetic moment – coupling schemes – LS and JJ coupling – spatial quantization – Bohr magnetron Spectral terms and notations – selection rules – intensity rule and interval rule.

UNIT III: IONISATION POTENTIAL AND SPLITTING OF ENERGY LEVELS(15 hours)

Excitation and ionization potential – Davis and Goucher's method – Zeeman effect – Larmor's theorem – Debye's explanation of normal Zeeman effect – Anomalous Zeeman effect – theoretical explanation – Lande's 'g' factor and explanation of splitting of D1 and D2 lines of sodium – Paschen Back effect – theory – Stark effect (Qualitative treatment only)

UNIT IV: PHOTOELECTRICITY

(15 hours)

Photo electricity: Photoelectric emission laws – Lenard's experiment-Richardson and Compton experiment- Einstein photoelectric equation -experimental verification of Einstein's photoelectric equations by Millikan's experiment.

UNIT V: X-RAYS (15 hours)

X-RAYS: Continuous and characteristic X-RAY spectra absorption of X-RAYS by matter- concept of reciprocal lattice, Compton effect-derivation of expression for change in wavelength-experimental verification

TEXTBOOKS

- 1. R. Murugeshan, Modern Physics, S. Chand & Co., New Delhi, 2009.
- 2. N. Subramanian and BrijLal, *Atomic and Nuclear Physics*, S. Chand & Co., 2013.
- 3. J. B. Rajam, Atomic Physics, S. Chand Publishing Co., 2010.

- 1. A. B. Gupta and Dipak Ghosh, *Atomic Physics*, Books and Allied Publishers, 2nd Edition, 2009.
- 2. J. H. Hamilton and Yang, Modern Physics, McGraw Hill Publication, 1996.
- 3. A. Beiser, Concepts of Modern Physics, Tata McGraw Hill, New Delhi, 1997.
- 4. D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics, Willey NY, 6th Edition, 2001.

YEAR- II	Cou	rse Co	de:		Ti	itle of tl	ne Papei	r:		HRS/	WK	CREDITS			
SEM- IV	19	9PH408	В		APP	LIED EL	ECTRON	ICS		4	ı	3			
Course Out	comes														
CO1	Obta	Obtained knowledge of special devices and applications													
CO2	Study	Study of various linear operational amplifier circuits													
CO3	Study	Study of various applications of operational amplifier													
CO4	Basis	Basis introduction of 555 timer and locked loop													
CO5	Acqu	Acquire basis ideas of D/A and A/D converter													
		Марр	ing of	course	outco	mes wit	h the pr	ogram	specific	outcome	es				
Course	Pro	gramm	ne Out	comes	POs	Pr	ogramm	ne Speci	fic Outc	omes PS	Os	Mean			
Outcomes															
COs															
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	3.5	4	3.5	3	3	3	3	2.5	3.5	3	3.5	3.23			
CO2	3.5	4	4	4	4	2.5	2.5	4	4	4	4	3.68			
CO3	3	3.5	3	2.5	4	4	4	3.5	3.5	4	4	3.55			
CO4	3	3.5	2.5	3.5	4	3.5	4	3.5	4	3.5	3.5	3.50			
CO5	4	3.5	4	3.5	3.5	4	3.5	3.5	3.5	3.5	3.5	3.64			
				М	ean Ov	erall Sco	ore			l.		3.52			
				Resul	t: The	Score fo	r this co	urse is	High						
Mapping		1-2	20%		21-40%	6	41-60%	1	61-80	0%	8	1-100%			
Scale			1		2		3		4			5			
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0		3.1-4	1.0	4	4.1-5.0			
Quality		Very Poor Poor Moderate High Very I													
	<u> </u>			<u> </u>		Value	Scaling				1				
Mean Sc	ore of		Tot otal No	al Valu		ong Mean Overa	Mear	n Overal	l Score o	of COs=	Total Mea Total No				

UNIT - I : SPECIAL DEVICES AND APPLICATIONS

(15 hours)

FET _ Characteristics - parameter FET as amplifier - FET as VVR - MOSFET - Depletion and enhancement - UJT characteristics - UJT as relaxation oscillator - SCR characteristics.

UNIT - II: LINEAR OPERATIONAL AMPLIFIER CIRCUITS (15 hours)

OPAMP – Parameters – inverting and Non-inverting amplifier – gain – Miller effect – Virtual ground – offset voltage – offset current – PSRR - CMRR. OPAMP – Sign and scale changer – adder, subtractor and averager – integrator and differentiator – voltage follower – solving simultaneous linear equation.

UNIT – III : APPLICATIONS OF OPERATIONAL AMPLIFIER

(15 hours)

OP AMP logarithmic amplifer – antilogarthmicamplifer – Logarithmic multiplier – Logarithmic divider.Comparator – Schmitt trigger – Astablemultivibrator – Monostablemultivibrator – Bistablemultivibrator – Wein Bridge oscillator – phase shift oscillator.

UNIT - IV: 555 TIMER AND PLL

(15 hours)

555 Timer block diagram - Monostable operation — Astable operation — Schmitt trigger.Phase — Locked Loops (PLL): Basic principles — phase Detector- Analog phase detector — Digital phase detector — voltage controlled oscillator (VCO).

UNIT - V : D / A AND A / D CONVERTER

(15 hours)

Weighted resistor D/A converter – 4bit R-2R ladder DAC – Analog to Digital converter – Stair case ADC– Successive approximation ADC.

TEXT BOOKS

- 1. Vijayendran, Integrated Physics, S. Viswanathan Pvt. Ltd., 2009.
- 2. R.S. Sedha, *Applied Electronics*, S. Chand & Company Ltd., 2nd New Edition, 2000.
- 3. M. Arul Thalapathi, Basic and Applied Electronics, Cometak Publisher Chennai, 2005.

- 1. Albert Paul Malvino, Digital Computer Electronics, TMH Edition, 1992.
- 2. I.J. Jagrath, *Electronics Analog and Digital*, Prentice Hall of India, New Delhi, 1999.
- 3. Malvino Leach, Digital Principles and Applications, 4thEdn., Tata McGraw Hill, 1992.
- 4. Jacob Millman and Christos C. Halkias, Integrated Electronics, McGraw Hill International, 1971.
- 5. D. Roy Choudhury and Shall Jain, *Linear Integrated Circuits*, New age International (p) Ltd., 2010.
- 6. Ramakant A. Gayakwad, *OP-AMPS and Linear Integrated Circuits,* Prentice Hall of India, 1994.

YEAR – II		PHP404
SEMESTER – IV	PRACTICAL – IV	HRS/WK - 3
CORE – PRACTICAL – IV		CREDIT - 2

(Any nine out of the given 12 experiments)

- 1. Potentiometer –comparison of EMF
- 2. Potentiometer- high range voltmeter
- 3. Spectrometer-dispersive power of a grating
- 4. Spectrometer-dispersive power of a prism
- 5. P.O.Box –resistance-temperature coefficient
- 6. Field along the axis of a circular coil deflection magnetometer M Null deflection method.
- 7. Carry Fosters bridge- temperature Co-efficient of Resistance
- 8. Field along the axis of a circular coil vibrational magnetometer
- 9. Variation of resistance with temperature (thermistor)
- 10. LCR Studies- Two Resistors- Two Capacitors Two Inductors

YEAR-II	Cou	rse Co	de:		Ti	tle of tl	ne Paper	:		Course Code: Title of the Paper: HRS/WK CRI												
SEM- III &	APH	1301/4	01		,	ALLIED	PHYSICS			5		4										
IV																						
Course Out	comes																					
CO1	unde	rstand	the pr	operti	ies of n	natter &	à acous	tics														
CO2	unde	rstand	the el	ectrici	ity & n	nagneti	sm in el	ectrica	l circuit													
CO3	unde	rstand	the pr	incipa	al of op	tics an	d applic	ations														
CO4	Occu	ır the l	oasic k	nowle	edge of	relativ	rity & q	uantum	mecha	nics												
CO5	Expl	ain the	e vario	us ele	ctric IO	in ele	ctrical o	circuit														
		Марр	ing of	course	outco	nes wit	h the pr	ogram s	specific (outcome	es											
Course	Pro	gramn	ne Out	comes	POs	Pı	ogramn	ne Speci	fic Outc	omes PS	SOs	Mean										
Outcomes																						
COs												CO's										
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6											
CO1	3	2.5	4.1	3.5	3	2.5	3	3.1	4	3.2	3.2	3.1										
CO2	3.3	3.2	3	3	3.5	2.8	4	3.6	3	2.3	3.5	3.:										
CO3	3.5	4.2	3.5	2.8	3	3.2	3.5	3.5	3.7	4	3.2	3.4										
CO4	3.2	3.8	3	4.2	3	3.5	3.5	2.8	3.6	3.5	3.6	3.42										
CO5	4.3	3.5	3.7	3.2	3.8	2.5	3.5	3.2	4.3	3.2	3.5	3.53										
	1		l	М	ean Ov	erall Sc	ore	ı	1		J	3.36										
				Resul	t: The S	Score fo	r this co	urse is I	High													
Mapping		1-2	20%		21-40%	6	41-60%	1	61-80)%	8	1-100%										
Scale			1		2		3		4			5										
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0		3.1-4	1.0	4	4.1-5.0										
Quality		Very	Poor		Poor		Moderat	:e	Higl	h	Ve	ery High										
	ı					Value	Scaling	1			•											
Mean So	ore of		Tot otal No	al Valu	The second second	ong Mean Overs	Mear	n Overal	ll Score o	of COs=	I Eotal Mea Total No											

UNIT- I: PROPERTIES OF MATTER & ACOUSTICS

(15 hours)

Bending of beams: Non uniform bending-Torsion of a wire-Torsional pendulum.

Sound: Transverse vibrations of a stretched string- expression for the velocity of transverse wave – laws of transverse vibrations- A.C frequency measurement using sonometer- velocity of sound in a gas-Ultrasonics-production and uses.

UNIT- II: ELECTRICITY & MAGNETISM

(15 hours)

Capacitor- energy of charged capacitors- loss of energy due to sharing of charges DC circuits – growth and decay of charge containing resistance and capacitor (RC) circuit & inductance and resistance (LR) circuit - potentiometer-measurement of internal resistance of a cell and unknown resistances – Moment, Tan C and pole strength of a magnet

UNIT- III: OPTICS (15 hours)

Interference-Wedge shaped film-Air wedge-Description- Test for Optical flatness of glass plate-Determination of diameter of a thin wire by air wedge-spherical aberration — minimizing spherical aberration by using two thin lenses in contact-chromatic aberration- achromatic combination of two thin lenses in contact- optical activity-specific rotatory power-polarimeter

UNIT-IV: RELATIVITY & QUANTUM MECHANICS

(15 hours)

Elements of relativity and Postulates of theory of relativity- Lorentz transformation equations-derivation Addition of velocities-twin paradox Minkowski's four dimensional space.

Quantum mechanics: De Broglie's waves - Uncertainty principle- postulates of wave mechanics- - Schrödinger's equation (Time dependent one dimensional) - application to a particle in a box.

UNIT- V: ELECTRONICS

(15 hours)

FET-characteristics-parameters-FET as amplifier-IC-SSI LSI MSI-VLSI IC fabrication-Diode-flip flops-RS flip flops-JK flip flops .

Text Books

- 1) Principle of physics-BrijlalSubramaniyam
- 2) R. Murugesan, Allied Physics, S. Chand Publishing, 2005.
- 3) Brijlal Subramaniyam, Text book of Sound, Vikas Publishing, $\mathbf{2}^{\text{nd}}$ Revised Edition.
- 4) V.K.Metha.S Chand, *Principle of Electronics*, 7th Revised Edition, 2005.

YEAR – II		APHP401
SEMESTER – IV	ALLIED PRACTICAL	HRS/WK - 3
ALLIED		CREDIT - 2

LIST OF PRACTICALS

(Any TEN out of the Thirteen experiments can be selected)

- 14. Determination of Young's modulus –non-uniform bending -Pin and microscope.
- 15. Determination of Rigidity modulus- Torsional pendulum (without masses).
- 16. Determination of Rigidity modulus Static torsion
- 17. Sonometer frequency of tuning fork.
- 18. Sonometer A.C frequency Steel and Brass wire.
- 19. Air wedge thickness of a wire.
- 20. Spectrometer Grating-Minimum deviation
- 21. Potentiometer Measurement of Internal resistance of a cell.
- 22. Figure of merit of a galvanometer (Table galvanometer).
- 23. Construction of AND, OR NOT gates using diodes and transistors.
- 24. NAND gate as a universal gate.
- 25. Field along the axis of a circular coil-deflection magnetometer-B_H and M- Tan C.
- 26. RS- Flip flop, Clocked RS Flip flops.

YEAR- III	Cou	rse Co	de:		Ti	tle of t	he Paper	:		HRS/	WK	CREDITS		
SEM- V	19	9PH509	9		OPTIC	CS & SP	& SPECTROSCOPY 5							
Course Outco	mes													
CO1	Learr	the ba	asics of	Geon	netrical	Optics	and Lens	ses						
CO2	Study	Study the concepts Interference and its applications												
CO3	Acqu	Acquire Knowledge about Diffraction and its applications												
CO4	To U	To Understand the concept of Polarization and its application in analyzing the opti												
	activ	ities												
CO5	To Pr	ocure	the Fur	ndame	ental kn	owledg	ge of Spec	ctroscop	У					
	ı	Mappir	ng of co	ourse	outcom	es with	h the pro	gram sp	ecific ou	utcomes	j			
Course	Pro	gramn	ne Outo	comes	POs	Р	rogramn	ne Speci	fic Outc	omes PS	SOs .	Mean		
Outcomes												Score of		
COs												CO's		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	1.4	3.3	1.1	3.1	2.3	4.2	4.2	4.1	3.8	4.7	2.3	3.13		
CO2	1.2	3.5	1.3	3.2	2.6	4.4	4.3	4.1	3.9	4.2	2.1	3.16		
CO3	1.6	3.8	1.4	3.2	2.6	4.8	4.6	3.9	3.8	4.0	2.4	3.28		
CO4	1.8	3.8	1.4	3.2	2.4	4.5	4.1	3.9	4.2	3.5	2.1	3.17		
CO5	1.2	3.6	1.1	3.3	2.9	4.1	4.4	4.0	4.1	4.3	2.1	3.19		
				Me	an Ove	rall Sco	re					3.186		
			F	Result	: The So	ore fo	r this cou	rse is Hi	gh					
Mapping		1-2	20%		21-409	%	41-60%	5	61-80)%	8	1-100%		
Scale			1		2		3		4			5		
Relation	0.0-1.0 1.1-2.0 2.1-3.0 3.1-4.0											4.1-5.0		
Quality		Very	Poor		Poor		Moderat	te	High	า	Ve	ery High		
	'			,	,	Value S	caling				•			
Mean Sco	re of C	Os=	Total	l Vatue	yate sca	Mean Dve	Mea	n Overal	l Score d	of COs=	I Eotal Mea	72 Scores		

UNIT - I: GEOMETRICAL OPTICS

(15 hours)

Spherical aberration and lenses – Methods of minimizing spherical aberration – Condition for minimum spherical aberration in the case of two lenses separated by a distance – Chromatic aberration in lenses – Condition for achromatism of two thin lenses (In contact and out of contact) – Coma - Ramsden and Huygens's eyepieces— Angular dispersion – Dispersive power – combination of prisms to produce dispersion without deviation – Deviation without dispersion – Achromatic prisms Direct vision spectroscope.

UNIT – II: INTERFERENCE

(15 hours)

Colours of thin films – Air wedge – Determination of diameter of a thin wire by air wedge – Test for optical flatness – Michelson's Interferometer – Theory – Applications - λ , thickness of thin transparent material and resolution of spectral lines – Brewster's fringes – Refractive index of gases – Jamin's& Rayleigh's Interferometers – Stationary waves in light.

UNIT III: DIFFRACTION

(15 hours)

Fresnel diffraction – Diffraction at circular aperture, opaque circular disc, straight edge and narrow wire- Fraunhofer diffraction – single slit – double slit –Rayleigh's criteria – Resolving power of telescope, prism, microscope and grating.

UNIT - IV: POLARIZATION

(15 hours)

Double refraction – Nicol prism – polarizer and analyzer – Huygens's explanation of double refraction in uniaxial crystals – Dichroism – polaroids and their uses – plane, circularly and elliptically polarized light – production and detection – Optical Activity – Fresnel's explanation of optical activity – Specific rotatory power – Determination using Laurent's half shade polarimeter – Kerr effect and Faraday effect.

UNIT - V: SPECTROSCOPY

(15 hours)

Infrared spectroscopy, RAMAN, NMR, ESR - Principle –Instrumentation – applications-LASER, Principles of LASER, Semiconductor LASER, Nd-Yag LASER- Applications

Text Books

- 1. Subramaniam N & Brijlal, Optics, S. Chand & Co. Pvt. Ltd., New Delhi, 1990.
- 2. Khanna D R & Gulati H R, Optics, S. Chand & Co. Pvt. Ltd., New Delhi, 1979.
- 3. R. Murugesan, Optics and Spectroscopy S. Chand & Co. Pvt. Ltd., New Delhi, 2009.
- 4. Kailash K. Sharma, Optics: Principles and Applications, Academic Press, 2006.

- 1. Jenkins A. Francis and White E. Harvey, *Fundamentals of Optics*, McGraw Hill Inc., New Delhi, 1976.
- 2. Lipson S G, Lipson H and Tannhauser D S, Optical Physics, Cambridge University Press, 1995.
- 3. Raj M G, Fundamentals of Optics, Anmol Publications Pvt. Ltd, New Delhi, 1996.
- 4. D. Halliday, R. Resnick and J. Waler, Fundamentals of Physics, Wiley NY 6th Edition, 2001.
- 5. D Halliday, Resnick and K. S. Krane, *Physics*, 4th Edition Vols I & II, Wiley, 1994.
- 6. R. P. Feynman, R. B. Leighton and M. Sands, *The Feynman Lectures on Physics*, Vols.I, II and III Narosa, New Delhi, 1998.
- 7. G.Aruldhas, Spectroscopy, Vendeur Book Vistas (New Delhi, India), 2009.

YEAR- III	Cou	Course Code: Title of the Paper: HRS/WK											
SEM- V	19	9PH510)		SOL	ID STAT	E PHYSI	CS		5		5	
Course Outco	mes												
CO1	To Le	arn the	e Funda	amenta	al of Bo	nds in S	Solids						
CO2	To St	To Study the concepts of X-ray diffraction its applications in solids											
CO3	Unde	Understanding the properties of Magnetism and its applications in quantum ph											
CO4	Acqu	Acquiring the knowledge of Dielectrics and its properties in various materials											
CO5	To Pr	To Procure the knowledge of Superconductivity and its applications											
	ı	Mappir	ng of co	ourse o	utcom	es with	the pro	gram sp	ecific ou	utcomes	5		
Course	Pro	gramn	ne Out	comes	POs	Pr	ogramn	ne Speci	fic Outc	omes PS	SOs	Mean	
Outcomes													
COs													
	PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6												
CO1	1.1	3.5	1.2	3.3	2.2	4.4	4.3	4.1	4.5	3.6	2.4	3.14	
CO2	1.2	3.8	1.3	3.3	2.1	3.9	3.7	3.7	3.9	3.7	2.2	2.98	
CO3	1.6	3.8	1.2	3.1	2.3	4.8	4.1	3.8	3.8	3.9	2.5	3.17	
CO4	1.2	3.4	1.6	3.6	2.5	3.9	4.2	4.6	4.3	4.6	2.2	2.95	
CO5	1.4	4.0	1.1	3.7	2.2	4.0	3.9	4.2	4.5	4.3	2.1	3.21	
		•		Mea	n Ove	rall Scor	e			1	1	3.09	
			F	Result:	The So	ore for	this cou	rse is Hi	igh				
Mapping		1-2	20%		21-409	%	41-60%	ó	61-80)%	8	1-100%	
Scale			1		2		3		4			5	
Relation		0.0	-1.0		1.1-2.0	0	2.1-3.0)	3.1-4.0			4.1-5.0	
Quality		Very	Poor		Poor	ı	ery High						
	1			,		Value So	aling				•		
Mean Sco	ore of C		Tota tal No.a	Values		ng Mean Ove	Mear	n Overal	l Score d	of COs=	I Lotal Med Total No		

Unit I: BONDS IN SOLIDS

(15 hours)

Crystal lattice- primitive and unit cell- seven classes of crystals — Bravais lattice- Miller indices-structure of crystals- simple cubic, Hexagonal close packed structure-Face centered cubic structure, Body centered cubic structure, Simple cubic structure-Sodium chloride structure, Zinc Blende structure, Diamond structure

Unit II: X-RAY DIFFRACTION

(15 hours)

Diffraction of x-rays by crystals-Bragg's law in one dimension-Experimental method in x-ray diffraction-Laue method, Rotating crystal method-Powder photograph method-von Laue's equations-Point defects- Line defects- Surface defects- Volume defects-Effects of crystal imperfections

Unit III: MAGNETISM

(15 hours)

Different type of magnetic materials- Classical theory of Diamagnetism(Langevin theory)-Langevin theory of Paramagnetism – Weiss theory of Paramagnetism- Qualitative explanation of Heisenberg's Internal Field and Quantum Theory of Ferromagnetism.

Unit IV: DIELECTRICS (15 hours)

Fundamentals definitions in dielectrics – different types of electric polarization- Frequency and Temperature Effects on Polarization – Dielectric loss – Local Field on internal field Clausius-Mosotti Relation- Determination of Dielectric Constant – Dielectric Breakdown – Properties of Different types of insulating materials

Unit V: SUPERCONDUCTIVITY

(15 hours)

Introduction-Meissner effect-Limitation- Type I& II Superconductivity-Vortex states- BCS Theory (Qualitative treatment only)-Josephson's effect-Copper pair tunneling.

TEXT BOOKS

- 1. K. Ilangovan, Solid State Physics, MJP Publication, 2012.
- 2. S.O. Pillai, Solid State Physics, New Age Science Publication, 2009.
- 3. Arumugam, Materials Science, Anuradha Publications, 2015.
- 4. Puri&Babber, Solid State Physics, S. Chand Limited, 2008.

- 1. C. Kittel, *An introduction to Solid State Physics,* 5th Edition, Published by John Wiley & Sons Inc, 1976.
- 2. Dekker A.J. Solid State Physics, Mac Millon Ind. Ltd., 1985.
- 3. Ascroft&Mermin, Solid State Physics, Pacific Grove, CA: Brooks cole, 1976.
- 4. Gupta and Kumar, Solid State Physics, K Nath& Co., 2013.

YEAR- III	Со	urse Co	de:			Title of	the Pap	er:		HRS	HRS/WK		
SEM- V	1	9EPH5:	1A		D	IGITAL I	ELECTRO	NICS			5	4	
						ELEC	TIVE – IA	4					
Course Out	comes			<u> </u>									
CO1	To Le	arn the	Funda	menta	l of Dig	ital elec	tronics 8	& Microp	rocesso	r			
CO2	To St	udy the	e functi	ons of	Boolea	n Algeb	ra						
CO3	Obta	ining t	he kno	wledge	about	Arithm	etic circı	uits & Se	quential	Logic ci	rcuits		
CO4	To Le	arn ab	out the	e worki	ng of D	/A & A/	D Conve	rters					
CO5	To In	troduce	e the c	oncept	s and v	vorking	of micro	process	or 8085				
	Mapping of course outcomes with the program specific outcomes												
Course	Pro	gramn	ne Out	comes	POs	Р	rogramr	ne Speci	fic Outco	omes PS	Os	Mean	
Outcomes												Score of	
Cos												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	2.1	3.5	2.2	3.3	3.5	3.6	4.3	3.6	4.2	4.3	1.1	3.24	
CO2	3.2	3.8	2.3	3.5	2.8	3.4	4.4	3.2	4.6	4.7	1.2	3.43	
CO3	1.1	3.6	1.2	3.1	3.3	3.8	4.1	3.8	4.4	4.4	1.5	3.11	
CO4	4.0	3.4	1.4	2.6	3.5	3.8	4.6	3.3	4.3	4.1	1.2	3.29	
CO5	2.4	4.0	1.3	3.7	3.6	4.0	4.4	4.3	4.3	4.0	1.1	3.37	
	1			М	ean Ov	erall Sco	ore	1	-L			3.304	
				Resul	t: The S	Score fo	r this co	urse is H	igh				
Mapping		1-2	20%		21-40%	%	41-60%	ó	61-80)%	8	1-100%	
Scale			1		2		3		4			5	
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0)	3.1-4	.0	4	1.1-5.0	
Quality		Very	Poor		Poor		Modera	te	High	า	Ve	ery High	
	1			-		Value S	Scaling	1			·		
Mean S	core of		- The second second	al Value	April American	Mean Over	Mea	n Overal	l Score o	of COs=	otal Mear		

UNIT-I DIGITAL FUNDAMENTALS

(15 hours)

Number systems – decimal, binary, octal and hexadecimal systems – conversion from one number system to another Codes – BCD code – excess 3 code, Gray code – ASCII code – Binary arithmetic – Binary addition – subtraction – unsigned binary numbers – sign magnitude numbers – I's and 2's complement – Binary multiplication and division.

LOGIC GATES AND LOGIC FAMILIES

(15 hours)

AND, OR circuits using diodes and transistors – NOT using transistors – NAND, NOR and EXOR – functions and truth tables. NAND & NOR as universal gates.

UNIT - II BOOLEAN ALGEBRA AND SIMPLIFICATION OF LOGIC CIRCUITS(15 hours)

Laws and theorems of Boolean algebra – De Morgan's theorems and their circuit implications – Duality theorem, simplification of Boolean equations – Karnaugh map – pairs, quads, octets – 2,3 and 4 variables –SOP method – NAND – NAND circuits – POS method – NOR – NOR circuits.

UNIT - III ARITHMETIC CIRCUITS AND SEQUENTIAL LOGIC CIRCUITS(15 hours)

Arithmetic building blocks — Half adder — Full adder — parallel binary adder — Half subtractor — Full subtractor — The adder-subtractor — digital comparator — parity checker/generator.Flip-flops —JK flip — flop — JK master slave flip-flop —Flip flop applications. Shift register functions- Shift right-shift left-Shift register applications.

UNIT – IV: D/A AND A/D CONVERTERS

(15 hours)

Introduction – variable resistor network – binary ladder – D/A converter – D/A accuracy and resolution – A/D converter – simultaneous conversion – A/D accuracy and resolution.

UNIT – V: INTRODUCTION TO MICROPROCESSOR 8085 (15 hours)

Basics of semiconductor memory- RAM, ROM, PROM and EPROM. Microcomputer organization-8085 Microprocessor-pin functions-architecture-machine and assembly language-programmer's model of 8085-8085 addressing modes. Classification of instruction and format – 8-bit data transfer and arithmetic instructions.

TEXT BOOKS

- 1. Arul Thalapapathi, Fundamentals of Digital Computers, Comptek Publishers, Chennai, 1995.
- 2. Vijayendran, *Fundamentals of Microprocessor 8085*, S. ViswanathanPrinters & PublishersPvt.Ltd, 2006.
- 3. Vijayendran, Integrated Electronics, Viswanathan, S., Printers & Publishers Pvt. Ltd., 2009.
- 4. NagoorKani, Microprocessor, RBA Publications, 2016.
- 5. B. Ram, Introduction to Microprocessor and Microcontroller, DhanpatRai Publications, 2012.

- 1. Malvino and Leech, *Digital Principles and Application*, 4th Edition, Tata Mcgraw Hill, New Delhi, 2000.
- 2. Millman and Halkias, Integrated Electronics, International Edition, McGraw Hill, New Delhi, 1972.
- 3. T. C. Bartee, Computer Architecture and Logic Design, McGraw Hill, 1991.
- 4. J.P. Agarwal and Anit Agarwal, *Solid State Electronics*, PragatiPrakashan, 2nd Edition, 2014.
- 5. Herbert Taub and Donald Schilling, *Digital Integrated Electronics*, McGraw Hill, 1st Edition, 2008.
- 6. Anokh Singh and A. K. Chhabra, *Fundamentals of Digital Electronics and Microprocessors*, 2nd Revised and Enlarged Ed., 2. Chand & Co. Ltd., New Delhi, 2005.
- 7. Floyd, *Digital Fundamentals*, Pearson Education, 8th Edition, S. Chand Publications, 2004.

YEAR- III SEM- V	Course Code: Title of the Paper: HRS/WK 19EPH51B NUMERICAL METHODS & BASIC 5 COMPUTER PROGRAMMING ELECTIVE-IB										CREDITS 4			
Course Outco	mes		<u> </u>									I		
CO1	To Le	arn the	Solve	variou	ıs Funda	amenta	I mather	natical e	quation	S				
CO2	To St	To Study the functions of Interpolation methods												
CO3	Acqu	Acquring the knowledge about Numerical integration & Differentiation												
CO4	To Learn the Basic of C Language													
CO5	To Procure the concepts of Control Statements in C Language													
	ſ	Mappir	ng of co	ourse o	outcom	es with	the pro	gram sp	ecific ou	tcomes				
Course	Pro	gramn	ne Outo	comes	POs	ı	Program	me Spec	ific Out	comes P	SOs	Mean		
Outcomes												Score of		
Cos												CO's		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	1.1	3.8	1.1	3.4	3.5	3.4	4.3	4.6	3.2	3.3	2.1	3.07		
CO2	2.2	3.6	1.1	3.5	2.8	3.6	4.4	4.2	3.5	3.5	1.1	3.04		
CO3	2.1	3.7	1.1	3.1	3.3	3.3	4.1	4.8	3.3	3.6	1.1	3.04		
CO4	3.4	4.4	1.0	4.6	3.5	4.2	4.1	3.3	2.1	3.8	2.2	3.32		
CO5	3.6	4.0	1.0	4.7	3.6	4.0	4.3	4.5	2.0	4.4	2.1	3.47		
	1			М	ean Ove	erall Sco	ore					2.926		
			Res	ult: Th	ne Score	e for th	is course	is Mod	erate					
Mapping		1-2	20%		21-40%	%	41-60%	Ś	61-80)%	81-	100%		
Scale			1		2		3		4			5		
Relation		0.0	-1.0		1.1-2.0	0	2.1-3.0)	3.1-4	.0	4.1	L-5.0		
Quality		Very	Poor		Poor		Moderat	te	High	າ	Ver	y High		
					\	/alue So	caling							
Mean Sco	ore of C		Tota tul No.o	l Value f POs 8		ng Mean Over	Mear	n Overal	l Score c	f COs=	otal Mean Total No.oj			

UNIT 1: SOLUTION OF EQUATION

(15 hours)

Eigen values, Eigen vectors, CayleyHamilton; characteristic equation of a matrix –Solution of simultaneous equations – Gauss elimination method – Gauss-Jordan method.

UNIT 2: INTERPOLATION

(15 hours)

Linear and Lagrange interpolation – Newton's forward & backward interpolation polynomial equation & determination of roots – Newton-Raphson method.

UNIT 3: NUMERICAL INTEGRATION AND DIFFERENTIATION (15 hours)

Trapezoidal rule – Simpson rule 1/3 & 3/8 – Solution of first & second order differential equation: Taylor series – Euler's method (Improved & Modified) – Solutions of forth order Runge-Kutta method.

UNIT 4: DATA TYPE OPERATORS

(15 hours)

History & Features of C Language - Variable name – data type and sizes – declaration – arithmetic, relational and logical operators – precedence and order of evaluation.

UNIT 5: CONTROL STATEMENTS & IPR

(15 hours)

Unconditional control statements – GOTO and labels – Conditional control statements – simple IF, IF..ELSE, nested IF..ELSE, ELSE IF ladder – switch case – break – continue statement. Looping statement – while – do..while – for – nested for loop – (Basic Programs - Qualitative studies only) - Introduction and the need for intellectual property right (IPR) - Kinds of Intellectual Property Rights: Patent, Copyright, Trade Mark

TEXT BOOKS

- 1. S.S. Sastry, Numerical Methods, Prentice Hall India Learning Private Limited; Fifth edition 2012.
- 2. Venkataraman, Numerical Methods, The National Publishing Company, Madras, 1999.
- 3. Thilagavathi, Numerical Methods, Published by S. Chand & Company Ltd., 2013.
- 4. Kandasamy, Numerical Methods, S Chand & Company; Reprint 6th Edition, 2006.
- 5. E. Balagurusamy, ANSI-C, McGraw Hill Education India Private Limited; Seventh Edition, 2016.

- 1. Satya Prakash, Mathematical Physics, 4th Ed., Sultan Chand & Sons Publication, New Delhi, 2014.
- 2. A. Singaravelu, Numerical methods, 1st Ed., Meenakshi Publication, Tamil Nadu, 2008.
- 3. Yeshwantkanitkar, Let us 'C', BPB Publications; Thirteenth Revised and Updated Edition, 2016.
- 4. Kuo-Addison, Numerical Methods and Computers, Wesely London, 1966.

YEAR- III	Cou	rse Co	de:		•	Title of	the Pape	er:		HRS	S/WK	CREDITS		
SEM- V	19	EPH52	Α			GEOF	HYSICS				5	4		
						ELEC	TIVE-2C							
Course Outo	omes													
CO1	To kr	now the	inforr	nation	about t	he eartl	n and so	lar syste	m					
CO2	To Le	arn the	e interp	retatio	n of M	athema	tical fun	ctions in	geograp	hical fie	lds			
CO3	Obta	btaining the knowledge about the Magnetic field on earth												
CO4	To Le	arn th	e conc	epts of	Sesimo	ology								
CO5	To Le	Learn the basics of Geodynamics												
		Марр	ing of	course	outcor	nes wit	h the pro	ogram sį	ecific o	utcomes	i			
Course	Pro	gramn	ne Out	comes	POs	Р	rogramn	ne Speci	fic Outco	omes PS	Os	Mean		
Outcomes								Score of						
COs												CO's		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	2.1	2.8	1.0	2.4	2.5	3.3	3.3	3.8	3.1	3.2	1.1	2.6		
CO2	2.2	2.4	1.1	2.5	2.1	3.5	3.4	3.2	3.6	3.2	1.2	2.58		
CO3	2.3	2.7	1.0	2.7	2.3	3.1	3.7	3.2	3.1	3.3	1.1	2.59		
CO4	3.3	3.4	1.0	2.6	2.2	3.7	3.2	3.6	3.5	3.1	1.2	2.8		
CO5	2.6	2.0	1.0	2.5	2.1	3.0	3.1	3.0	2.0	3.4	1.1	2.34		
				М	ean Ov	erall Sco	ore					2.582		
			R	esult: T	he Sco	re for th	nis cours	e is Mod	lerate					
Mapping		1-2	20%		21-40%	6	41-60%	5	61-80)%	8	1-100%		
Scale			1		2		3		4			5		
Relation		0.0-1.0 1.1-2.0					0 2.1-3.0			3.1-4.0				
Quality		Very	Poor		Poor		Moderat	te	High	า	Ve	ery High		
						Value S	Scaling							
Mean So	core of			al Value		Mean Over	Mea	n Overal	l Score o	f COs=	otal Mear Total No.			

UNIT 1: THE EARTH IN THE SOLAR SYSTEM

(15 Hours)

Solar System Formation, Accretion, and the Early Thermal State of the Earth-Rotation and Angular Momentum- The Sun-Planetary Formation-Early Thermal State of the Earth- Radioactive Decay-Radiometric Dating- Radioactivity as a Heat Source-Meteorites and the Bulk Composition of the Earth-Chondrites-Secondary Processing-Achondrites-Irons and Stony-Irons-The Terrestrial Planets-One-dimensional Earth's Structure-Lateral Heterogeneity in the Mantle

UNIT 2: THE EARTH'S GRAVITATIONAL FIELD

(15 Hours)

Global Gravity, Potentials, Figure of the Earth, Geoid-Gravitational Potential due to Nearly Spherical Body-The Poisson and Laplace Equations-Cartesian and Spherical Coordinate Systems-Spherical Harmonics-Global Gravity Anomalies- Gravity Anomalies and the Reduction of Gravity Data-Correlation between Gravity Anomalies and Topography-Flexure and Gravity.

UNIT 3: THE MAGNETIC FIELD OF THE EARTH

(15 Hours)

The Main Field-The Internal Field- The External Field-The Magnetic Induction due to a Magnetic Dipole-Magnetic Potential due to More Complex Configurations-Power Spectrum of the Magnetic Field-Downward Continuation-Secular Variation.

UNIT 4 :SEISMOLOGY

(15 Hours)

Introduction- Strain-Stress-Equations of Motion, Wave Equation, P and S-waves- From Vector to Scalar Potentials — Polarization-Solution by Separation of Variables- Plane Waves- Snell's Law-Fermat's Principle and Snell's Law- Ray Geometries of the Wave Field-Travel Time Curves and Radial Earth Structure-Surface Waves- Sensitivity Kernels-Excitation of Surface Waves-Dispersion: Phase and Group Velocity-Dispersion Curves- Seismology: Free Oscillation

UNIT 5:GEODYNAMICS

(15 Hours)

Heat Flow- Heat Flow, Geothermal Gradient, Diffusion-Thermal Structure of the Oceanic Lithosphere-Thermal Structure of the Oceanic Lithosphere (cont.)-Bending, or Flexure, of Thin Elastic Plate-The Upper Mantle Transition Zone.

Text Books:

- 1. Lowrie, William. Fundamentals of Geophysics. Cambridge, UK: Cambridge University Press, September 1997.
- 2. Fowler, C. M. R. The Solid Earth: An Introduction to Global Geophysics. Second Edition. Cambridge, UK: Cambridge University Press, 2004,
- 3. Stacey, F. D. Physics of the Earth. 3rd ed. Brisbane, Australia: Brookfield Press, 1992.
- 4. Sleep, Norman H., Kazuya Fujita, and K. Fujita. Principles of Geophysics. Malden, MA: Blackwell Science, 1997

Reference Books:

- 1. Turcotte, Donald L., and Gerald Schubert. Geodynamics. 2nd ed. Cambridge, UK: Cambridge University Press, 2001.
- 2. Stein, Seth, and Michael Wysession. An Introduction to Seismology, Earthquakes and Earth Structure. Malden, MA: Blackwell Science, 2002.
- 3. Anderson, Don. Theory of the Earth. Malden, MA: Blackwell Science, 1990.
- 4. Merrill, Ronald T., et al. The Magnetic Field of the Earth. Burlington, MA: Academic Press, September 15, 1998.

YEAR- III	Cou	rse Co	de:		1	Γitle o	f t	he Pape	er:		HRS/WK CR		CREDITS	
SEM- V	19	EPH52	В	1	FIBER C	PTIC	co	MMUN	IICATIO	N		5	4	
						ELE	СТІ	IVE- 2D						
Course Outco	mes													
CO1	To ur	ndersta	nd the	basics	of opt	ic fibe	rs							
CO2	To st	o study the information about the characteristics of fiber optics												
CO3	ТоО	o Obtain the knowledge about the Communication processes												
CO4	To st	study the functions of couplers and connectors												
CO5	Proci	Procuring the functions of Analog and Digital Links												
	1	Mappii	ng of co	ourse (outcom	es wi	th	the pro	gram sp	ecific o	utcomes	5		
Course	Pro	gramn	ne Out	comes	POs		P	rogram	me Spe	cific Out	comes l	PSOs	Mean	
Outcomes								Score of						
COs											CO's			
	PO1	PO2	PO3	PO4	PO5	PSO	1	PSO2	PSO3	PSO4	PSO5	PSO6		
CO1	2.1	3.8	2.0	3.5	2.2	4.6		3.2	3.4	4.3	3.4	2.1	3.14	
CO2	2.2	3.6	2.2	3.4	2.1	4.1		3.4	3.8	4.4	3.2	2.1	3.13	
CO3	2.3	2.2	2.4	3.3	2.2	4.4		3.4	3.7	4.6	3.3	2.1	3.08	
CO4	2.4	2.4	2.0	3.1	2.1	4.3		3.2	3.6	4.4	3.5	2.3	3.02	
CO5	2.6	2.4	2.4	2.8	2.4	4.7		3.3	3.8	3.1	3.8	2.1	3.18	
		I	<u>L</u>	М	ean Ov	erall S	СО	re					3.11	
			ı	Result	: The Sc	ore fo	or t	this cou	rse is H	igh			1	
Mapping		1-2	20%		21-409	%		41-60%	,)	61-80)%	81-	100%	
Scale			1		2			3		4			5	
Relation	0.0-1.0 1.1-2.					0 2.1-3.0				3.1-4.0			4.1-5.0	
Quality		Very	Poor		Poor		Ν	∕Ioderat	te	Higl	า	Ver	y High	
	I			1	,	Value	Sc	aling				1		
Mean Sco	ore of C		Tota tal No.a	l Vatue		ing Mean Ove		Mear	n Overal	l Score d	of COs=	I Lotal Mean Total No.o,		

UNIT - I: OPTIC FIBERS

(15 hours)

Fiber optic revolution – basic characteristics of optical fiber – acceptance angle – numerical aperture – propagation of light through optical fiber – theory of mode formation – classification of fibers – step index and graded index fibers – single mode and multi mode fibers

UNIT - II: TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS (15 hours)

Introduction, Attenuation, absorption, scattering losses, bending loss, dispersion, Intra model dispersion, Inter model dispersion.

UNIT - III: FIBER OPTIC COMMUNICATION

(15 hours)

Source and detectors for fiber optic communication – Laser and LED – Analog and digital modulation methods – principle of optical detection – pin and APD photo detectors – Noise – Design consideration of a fiber optic communication system.

UNIT – IV: FIBER COUPLERS AND CONNECTORS

(15 hours)

Introduction, fiber alignment and joint loss, single mode fiber joints, fiber splices, fiber connectors and fiber couplers.

UNIT - V: ANALOG AND DIGITAL LINKS

(15 hours)

Analog links – Introduction, overview of analog links, CNR, multichannel transmission techniques, RF over fiber, key link parameters, Radio over fiber links, microwave photonics. Digital links – Introduction, point—to—point links, System considerations, link power budget, resistive budget, short wave length bandand transmission distance for single mode fibers, Power penalties, nodal noise and chirping.

TEXT BOOKS

- 1. R. Murugeshan, Modern Physics, S. Chand & Co., 2009.
- 2. Senthil Kumar, Engineering Physics, VRB Publishers Pvt. Ltd., 2013.
- 3. Senior, Optical Fiber Communications: Principles and Practice, 3e: Third edition, Pearson, 2010
- 4. Sarkar Subir Kumar, Optical Fibres and Fibre Optic Communication Systems S. Chand, 2010

- 1. John M. Senior, Optical Fiber Communications, Cambridge University Press, 1996.
- 2. Govind P. Agrawal, Fiber Optic Communication Systems, John-Willey & Sons, 2007.
- 3. P. K. Palanisamy, *Physics for Engineering*, Scitech publishing Pvt. Ltd., Chennai, 2009.

YEAR- III	Co	ourse C	ode:			Title o	of the Pa	per:		HRS	S/WK	CREDITS		
SEM- V		19SPH	51			ELECTR	RICAL WI	RING			4	2		
					(Sk	ill deve	lopment	course)					
Course Outco	mes													
CO1	To le	arn the	funda	menta	ls of el	ectricity	, electri	cal para	meters a	and test	ing tool.			
CO2	Unde	erstand	differe	ent me	thods	of elect	ricity ger	neration	and typ	es of m	otors.			
CO3	Stu	dy the	electri	cal con	nponer	nts, sym	bols, typ	es of ci	rcuits an	d tools				
CO4	To St	udy the	e vario	us met	thods o	of joining	g conduc	ctors an	d electri	cal acce	ssories			
CO5	Learr	the m	ethods	of wi	ring a h	nouse ai	nd indus	try and						
	То Н	o Hands on training on house wiring and troubleshooting the electrical circuits an												
	appli	ppliances												
		Mapping of course outcomes with the program specific outcomes												
Course	Pro	Programme Outcomes POs Programme Specific Outcomes PSOs												
Outcomes												Score of		
COs												CO's		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	3.3	4.6	3.1	4.6	3.2	4.6	4.7	4.4	4.7	4.5	3.4	4.10		
CO2	3.0	4.7	3.5	4.6	3.1	4.1	4.8	4.8	4.6	4.3	3.1	4.03		
CO3	3.1	4.6	3.6	4.7	3.2	4.2	4.6	4.7	4.8	4.8	3.1	4.12		
CO4	3.0	3.8	3.4	4.6	3.1	4.3	4.7	4.6	4.5	4.5	3.3	3.98		
CO5	3.0	4.1	3.6	4.8	3.0	4.7	4.4	4.9	4.1	4.7	3.5	4.07		
				Me	an Ove	erall Sco	re	ı		ı	ı	4.06		
				Result	: The S	core fo	r this co	urse is H	ligh					
Mapping		1-2	.0%		21-409	%	41-60%)	61-80)%	8	1-100%		
Scale		-	1		2		3		4			5		
Relation		0.0	-1.0		1.1-2.0	-2.0 2.1-3.0 3.1-					4.0			
Quality		Very	Poor		Poor		Moderat	te	High	า	V	ery High		
						Value S	Scaling	ļ.			I			
Mean Sco	re of C	Os= -	Tota	l Vatue	VIALE SCI	Mean Ove	Mea	n Overa	II Score	of COs=	L Zotal Med	in Scores		

Unit-I:ELECTRICITY GENERATION

(12 Hours)

Fundamentals of electricity - Current, Voltage, resistance - Ohm's law - Power -Kilowatt hour - Watt meter - Electrical measurements - Electric powergeneration by Thermal, hydro, atomic and nuclear methods - Batteries -Generators - Study of Generator.

Unit-II:ELECTRIC CIRCUITS AND DISTRIBUTION

(12 Hours)

Symbols of electrical parameters - Importance Series, Parallel connections -Ac and DC - Conductors - Inductor, Conductors - Inductor, Capacitor and Transformer - Distribution methods - single phase and three phase - Star and delta connections - Rules of electric connections - SWG - Motors - Study of motor, series and parallel circuits.

Unit-III:ELECTRICAL WIRING -I

(12 Hours)

Tools - Methods of Joining conductors - House wiring methods - Gilt, woodcasing, Tough - Rubber sheathed, conduit or PVC pipe and concealed –Switches - ceiling roze - lamp holders, sockets - Fuse base - Distribution box–Trip switches - Earth connection -Experimental study of house wiring.

Unit-IV: ELECTRICAL WIRING - II

(12 Hours)

Main board preparation - Distribution - Cut - out preparation - Switch boardpreparation - Power factor -IEE regulations - Safety precautions —Testing the insulation -Experimental study of main, distribution and switchboards.

Unit-V:ELECTRICAL APPLIANCES & SAFETY PRECAUTIONS (12 Hours)

Tungsten - filament bulb - tube light -mercury and sodium vapour lamp -LED lamp - heater - iron box - table fan - ceiling fan - battery eliminator -electrical requirement to washing machine and refrigerator - procedure torectify the electrical faults in electrical appliances.

Safety precautions

Precautions in handling tools Electric shock-First aid on electric shock Precautions to be observed while installing different electric appliances in houses.

Textbook:

Course material prepared by the Department.

YEAR- III		19SSPH52
SEMESTER - V	EVERYDAY PHYSICS	HRS/WK-0
		CREDIT-2

OBJECTIVES:

- To acquire the knowledge about the fundamental parameters in physics and to understand their applications in daily life.
- To understand the flow of heat and its transmission in different forms and to develops a scientific quest among students.
- > Transmission of sound waves, characteristics and their applications in human system.
- To discern the basic application of geographical physics, and their utilization in the field of Medication.
- > To comprehend the basic ideas of physics in space science and communication networking.

UNIT-I

Mechanics: Weight – Mass - Force – Laws of Motion-– Work - Energy – Power- Friction – Centre of Gravity – Torque – Momentum – Angular Momentum.

UNIT - II

Heat: Flow of Heat & Thermal Equilibrium(Applications – Riveting- bimetallic strip – Units of Heat energy – Transmission of heat – Conduction –Convection – Radiation –(Applications – Ocean Currents –Car Radiators – Ventilation – Wind system in atmosphere – Thermos flask).

UNIT-III

Sound & Optics: Sound waves – Doppler Effect –Power of Lens - Physics in the human body: The eyes as an optical instrument; vision defects; Rayleigh criterion and resolving power; sound waves and hearing; sound intensity; the decibel scale.

UNIT - IV

Geo & Medical Physics: Earthquake Richter scale - thunder and lightning - Lightning arrestors Cosmic showers - X-rays Ultrasound scan CT scan — MRI scan.

UNIT - V

Space science & Communication: Newton's law of gravitation - Weather forecasting and communication satellites - Indian Satellites- Electromagnetic spectrum- Radio Waves AM & FM transmission and reception.

Text Books:

- 1. University Physics by F. W. Sears, M. Zemansky, R. A. Freedman, and H. D. Young, PearsonEducation
- 2. Fundamentals of Physics by D. Halliday, R. Resnick, J. Walker, John Wiley & Sons

YEAR- III		PHP505
SEMESTER V	PRACTICAL -V	HRS/WK-6
PRACTICAL -5		CREDIT-3

(Any Twelve of the Following)

- 1. Young's modulus Koenig's method non uniform bending
- 2. Newton's rings R1, R2 and μ of a convex lens
- 3. Spectrometer i i' curve
- 4. Spectrometer narrow angled prism μ of the prism.
- 5. Spectrometer Cauchy's constant
- 6. Construction of voltage regulator (2 Diodes)-Zener Diode
- 7. RC coupled single stage amplifier
- 8. Construction of a low range power pack- Two diodes
- 9. EMF of a thermocouple mirror galvanometer (or) table galvanometer
- 10. Potentiometer emf of a thermocouple.
- 11. BG comparison of EMFs
- 12. Potentiometer Conversion of galvanometer into voltmeter
- 13. BG Absolute Capacitance
- 14. BG comparison of capacitances BG absolute capacitance of a capacitor
- 15. BG comparison of Mutual Inductance.
- 16. Transistor characteristics CE mode.

C	ourse C	Code:			Title o	of the Pa	per:	HRS	CREDITS			
	19PH6	511			•			ics &		5	5	
				N	/lathem	atical m	ethods					
mes												
To ur	ndersta	nd the	conce	pt of R	elativit	у						
To Le	earn the	e princ	iples 8	& prope	erties o	f waves a	and mat	ter				
To kr	o know about the Schrodinger equations and its applications											
To st	udy the	e math	ematio	cal fund	tions ir	physics						
To G	ain the	knowl	edge a	bout th	ne spec	ial functi	ons					
	Маррі	ng of c	ourse	outcor	nes wit	h the pro	ogram s	pecific c	utcome	es		
Pro	gramm	ne Outo	comes	POs	Р	rogramn	ne Spec	ific Outo	omes P	SOs	Mean	
											CO's	
PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
3.3	4.6	3.1	4.6	3.2	4.6	4.7	4.4	4.7	4.5	3.4	4.10	
3.0	4.7	3.5	4.6	3.1	4.1	4.8	4.8	4.6	4.3	3.1	4.03	
3.1	4.6	3.6	4.7	3.2	4.2	4.6	4.7	4.8	4.8	3.1	4.12	
3.0	3.8	3.4	4.6	3.1	4.3	4.7	4.6	4.5	4.5	3.3	3.98	
3.0	4.1	3.6	4.8	3.0	4.7	4.4	4.9	4.1	4.7	3.5	4.07	
		<u> </u>	Me	ean Ove	erall Sco	ore					4.06	
			Result	:: The S	core fo	r this co	urse is I	ligh				
	1-2	20%		21-409	%	41-60%	5	61-80)%	8	1-100%	
	:	1		2		3		4			5	
	0.0-1.0 1.1-2.				0 2.1-3.0 3.1			3.1-4	-4.0		4.1-5.0	
	Very	Poor		Poor		Moderat	te	Higl	า	Ve	ery High	
					Value S	Scaling				1		
ore of C	:Os=	Tota	l Value			Mea	n Overa	II Score	of COs=	L Zotal Mea	n Scores	
	To ur To Le To kr To st To Ga Pro PO1 3.3 3.0 3.1 3.0 3.0	To understate To Learn the To know about To study the To Gain the Mappi Programm PO1 PO2 3.3 4.6 3.0 4.7 3.1 4.6 3.0 3.8 3.0 4.1	To understand the To Learn the prince To know about the To study the math To Study the math To Gain the knowled Mapping of Corporate Programme Outcome Programme Outcome Programme Outcome Programme Outcome O	To understand the concest	To understand the concept of R To Learn the principles & proper To know about the Schrodinge To study the mathematical fund To Gain the knowledge about the	To understand the concept of Relativity To Learn the principles & properties of To know about the Schrodinger equation To study the mathematical functions in To Gain the knowledge about the spec Mapping of course outcomes wit	To understand the concept of Relativity To Learn the principles & properties of waves at To know about the Schrodinger equations and To study the mathematical functions in physics To Gain the knowledge about the special functions Mapping of course outcomes with the properties of waves at Programme Programme Outcomes Programme Prog	To understand the concept of Relativity To Learn the principles & properties of waves and math To know about the Schrodinger equations and its appl To study the mathematical functions in physics To Gain the knowledge about the special functions Mapping of course outcomes with the program so Programme Outcomes POs Programme Special functions Programme Outcomes POs Programme Special functions Programme Special functions A. S.	To understand the concept of Relativity To Learn the principles & properties of waves and matter To know about the Schrodinger equations and its applications To study the mathematical functions in physics To Gain the knowledge about the special functions	To understand the concept of Relativity	To understand the concept of Relativity To Learn the principles & properties of waves and matter To know about the Schrodinger equations and its applications To study the mathematical functions in physics To Gain the knowledge about the special functions	

UNIT - I: RELATIVITY

(15 hours)

Frames of references – Michelson – Morley experiment – significance of negative result – postulates of special theory of relativity – Lorentz transformation equations – Length contraction – Time dilation – Relativity of simultaneity – Law of addition of velocities – variation of mass with velocity – relativistic kinetic energy equations – postulates of general theory of relativity – gravitational red shift.

UNIT - II WAVE MECHANICS

(15 hours)

Matter Waves – de Brogile wavelength – wave velocity and group velocity – Heisenberg's Uncertainty principle – proof of Uncertainty principle for one dimensional wave packet – postulates of wave mechanics – properties of wave function – operator formalism (Basics only)—eigen functions – eigen values – expectation values.

UNIT - III : SCHRÖDINGER EQUATIONS AND ITS APPLICATIONS (15 hours)

Schrödinger equation – time dependent and time independent – application of Schrödinger equations – linear harmonic oscillator – zero point energy – particle in a one dimensional box – barrier penetration and tunneling effect rigid rotator – hydrogen atom.

UNIT - IV: MATHEMATICAL PHYSICS

(15 hours)

Gauss divergence theorem – stokes theorem – Greens theorem – applications of vectors to hydrodynamics.

Spherical polar coordinates – expressions for gradient, div in Cartesian & spherical coordinates.

UNIT - V : SPECIAL FUNCTIONS

(15 hours)

Beta and gamma functions—relation between them—harmonics-Bessel's differential equations—Legendre's differential equations—Hermite's differential equations—Laguerre's differential equations—series solutions.

TEXT BOOKS

- 1. V. Devanathan, *Quantum Mechanics*, Narosa, Chennai, 2005.
- 2. R. Murugeshan, Kiruthigs, Sivaprasath, Modern Physics, S Chand & Co., 2007.
- 3. V. K. Thangappan, Quantum Mechanics, Wiley Eastern, 1985.
- 4. P. M. Mathews and Venkatesan, A Text Book of Quantum Mechanics, McGraw Hill, 1978.
- 5. Sathya Prakash, *Mathematical Physics*, Sultan Chand & Sons, 6th Revised Edition Reprint 2014.
- 6. R. Murugeshan, Mechanics and Mathematical Methods, S Chand Publishing & Co., 2015.

- 1. B. D. Gupta, Mathematical Physics, Vikas Publishing House; Fourth Edition, 2009.
- 2. Ghatak and Loganathan, Quantum Mechanics, McMillan, 2004.
- 3. A. Ghatak, Basic Quantum Mechanics, McMillan India, 2002.
- 4. Murray Spiegal, *Introduction to Boundary Value Problems* (Scahaum's Series), McGraw-Hill Education; 1st Edition, 1974.
- 5. Mathews P.M and Venkatesan, Quantum Mechanics, Tata McGraw Hill.1977
- 6. Feynmann Lectures, Quantum Mechanics, Vol. III. 2013

YEAR- III	Co	ourse C	Code:			Title o	f the Pa	per:		HRS	S/WK	CREDITS
SEM- VI		19PH6	12		NUCL	EAR &R	ADIATIO	ON PHYS	SICS		5	5
Course Outco	mes											1
CO1	To ur	ndersta	nd the	Basic	concep	t Nucle	ar Struc	ture				
CO2	To Ad	cquire l	knowle	dge ab	out R	adio Act	ive Deca	ау				
CO3	Unde	erstand	ing the	Const	ruction	n & Wor	king of v	various I	Particle A	Accelera	itors	
CO4	To st	udy the	e Work	ing of	Nuclea	r reacto	rs & Rad	diation				
CO5	To st	udy the	e Basic	Classif	ication	of Elen	nentary	Particles	5			
		Маррі	ng of c	ourse	outcor	nes witl	h the pro	ogram s	pecific o	utcome	es	
Course	Pro	gramm	ne Outo	comes	POs	Pi	rogramn	ne Spec	ific Outo	omes P	SOs	Mean
Outcomes								Score of				
COs												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3.2	4.3	3.1	4.1	3.0	4.5	4.5	4.5	4.7	4.6	3.8	4.02
CO2	3.1	3.9	3.3	4.2	3.1	4.7	4.5	4.8	4.3	4.4	3.7	4.00
CO3	3.0	4.6	3.1	4.5	3.0	4.1	4.4	4.7	4.5	4.5	3.6	4.17
CO4	3.4	3.8	3.2	4.5	3.1	4.5	4.8	4.3	4.7	4.6	3.6	4.04
CO5	3.5	4.5	3.2	4.8	3.7	4.8	4.9	4.9	3.8	4.8	3.4	4.20
			.[Me	an Ove	erall Sco	re					4.086
				Result	: The S	core fo	r this co	urse is H	ligh			1
Mapping		1-2	20%		21-409	%	41-60%	Ď	61-80)%	8	1-100%
Scale		:	1		2		3		4			5
Relation		0.0	-1.0		1.1-2.0	0 2.1-3.0			3.1-4	.0	,	4.1-5.0
Quality		Very	Poor		Poor	1	ery High					
						Value S	caling				1	
Mean Sco	ore of C		Tota tal No.a	l Values				n Overa	II Score	of COs=	L Lotal Med Total No	

UNIT - 1: NUCLEAR STRUCTURE

(15 hours)

Nuclear spin – determination of magnetic dipole moment, electric quadruple moment, parity of nuclei, isospin, theories of nuclear composition, proton and electron hypothesis, proton – neutron hypothesis, nuclear forces – meson theory of nuclear forces.

Liquid drop model – Bethe Weizacker's mass formula – application to alpha decay – Bohr – Wheeler theory – shell model – evidences – theory – energy level diagram – spin orbit interaction – magic numbers – nuclear stability.

UNIT - II : RADIOACTIVE DECAY

(15 hours)

Radioactive disintegration – law of successive disintegration – transport and secular equilibrium – radioactive series – Geiger – Nuttal law – Age of earth – alpha particle disintegration energy – alpha particle spectra – theory of alpha decay (Qualitative treatment). Beta ray spectra – origin – neutrino theory of beta decay – electron capture – gamma rays – determination of wavelength by Diamond – crystal spectrometer – nuclear isomerism.

UNIT - III: PARTICLE ACCELERATORS AND DETECTORS (15 hours)

Cyclotron – synchrocyclotron – Betatron – electron synchrotron – proton synchrotron (Bevatron)-GM counter – ionization chamber – bubble chamber – scintillation counter – photographic emulsion techniques.

UNIT - IV: REACTORS AND RADIATION PHYSICS

(15 hours)

Nuclear fission – Chain reaction – four-factor formula – reactor theory – critical size of a reactor – general aspect of reactor design – reactor shielding – reactor control – classification of reactors – pressurized heavy water reactor – fast breeder reactor-Introduction to recent rectors.

Radiation hazards — biological effects of radiation - radiation sickness — radiation units and operational limits radiation survey meters — pocket dosimeter —control of radiation hazards — radiation therapy — radioisotopes used for therapy — nuclear medicine — industrial applications — food preservatives.

UNIT - V: ELEMENTARY PARTICLES

(15 hours)

Classification – types of interaction – symmetry and conservation laws – hadrons – leptons – baryons – mesons – strangeness – hyperons – antiparticles – antimatter – basic ideas about quarks – types of quarks.

TEXT BOOKS

- 1. Brijlal and N.Subramaniam-Modern Physics
- 2. D.C. Tayal, *Nuclear Physics*, Himalaya Publishing House, 2011.
- 3. R. Murugeshan, Modern Physics, S. Chand & Co., 2009.
- 4. R. Murugeshan&Kiruthiga, Sivaprasath, *Modern Physics*, S. Chand & Co., 2009.
- 5. Thayalan, *Basic Radiological Physics*, Jaypee Brothers Medical Publishers Pvt. Ltd, 1st Edition, 2009.

- 1. S. N. Ghoshal, Nuclear Physics, S Chand & Co. Edition, 2003.
- 2. M. L. Pandya, R.P.S. Yadav, Elements of Nuclear Physics, KedarNath& Ram Nath Publishers, 2000.
- 3. Irving Kaplan, Nuclear Physics, Narosa, 2002.
- 4. Nuclear Physics J B Rajam, S chand Publishing Co.
- 5. Littlefield & Thorley, *Atomic and Nuclear Physics*, Springer, 3rd Ed. 1979.

YEAR-III	Cou	rse Co	de:	Title of the Paper: HRS/WK ASTROPHYSICS 5 ELECTIVE 3A								CREDITS
SEM-VI	19	ЕРН63	A									4
Course Outo	comes		1								,	
CO1	Study	/ about	t the Hi	story c	of Astro	nomy a	nd Cele	stial Me	chanics			
CO2	Learn	the co	oncepts	of ast	ronom	ical inst	rumenta	ation				
CO3	Acqu	ire Kno	wledge	e of Ste	ellar M	agnitude	es and C	olors				
CO4	Be fa	miliar v	with th	e Stella	ar struc	ture						
CO5	Apply	the kı	nowled	ge of S	Stellar e	evolutio	n					
		Марр	ing of	course	outco	mes wit	h the pr	ogram s	pecific o	outcome	es	
Course	Pro	gramn	ne Out	comes	POs	Pr	ogramn	ne Speci	fic Outc	omes PS	SOs	Mean
Outcomes								Score of				
COs												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3	3.8	4	3.5	3.5	2.8	3.5	3	4	3	3.5	3.4
CO2	3.8	3.2	3	3	3.5	3.6	4	3.5	3	2.6	3.5	3.3
CO3	3.5	4	3.2	2.5	3	3	3	3.5	3.5	3	3	3.:
CO4	3	3.8	3	3.8	3	4	3	2.8	3.5	3	3.5	3.3
CO5	4	2.5	3.5	3	3.5	2.5	3.5	3	3	3	2.5	3.09
				Me	ean Ov	erall Sco	re	I	I	I	ı	3.27
				Result	t: The S	Score fo	r this co	urse is l	High			
Mapping		1-2	20%		21-40%	6	41-60%	•	61-80)%	8:	1-100%
Scale			1		2		3		4			5
Relation	0.0-1.0 1.1-2.0					2.1-3.0			3.1-4	.0	4	1.1-5.0
Quality		Very	Poor		Poor	Moderate High V						ery High
						Value S	Scaling				1	
Mean Sc	ore of	COs=	75	al Valu	Valence	eng	Mear	n Overal	l Score d	of COs=	i Eotal Mea	es Coone

UNIT I: ASTRONOMY (15 Hours)

History of Astronomy Celestial Mechanics; Distances in Astronomy; Magnitude Scale; Color-indexSize and Time Scales

UNIT II: ASTRONOMICAL INSTRUMENTATION (15 Hours)

Basic Optics; Optical Telescopes; Radio Telescopes; Infrared, Ultraviolet, X-ray, and Gamma-Ray Astronomy

UNIT III: STARS (15 Hours)

Stellar Magnitudes and Colors, Brightness and distance, Luminosity, temperature and spectral class, the motion of stars relative to the Sun, the masses of stars,

UNIT IV: STELLAR STRUCTURE

(15 Hours)

Equations of Stellar Structure – Solutions to Equations of Stellar Structure, Toy Stellar Models: Homologous Stellar Models, the Radiative Stellar Envelope, and Fully Convective Stars with H[~] Opacity, Observational Aspects of Stellar Atmospheres, Continuum Radiation, and Lines

UNIT V: STELLAR EVOLUTION

(15 Hours)

Stellar Clusters Evolution of massive stars, Supernovae, Gamma-Ray bursts White Dwarfs, Chandrasekhar Limit, Neutron Stars, Pulsars GTR, Black holes.

TEXT BOOKS:

- 1. Bradley Carroll & Dale Ostlie, An Introduction to Modern Astrophysics , 2006.
- 2. T Padmanabhan, Theoretical Astrophysics: Vol. I-II-III, Cambridge University Press (2005).
- 3. WM Smart and R M Greene, Textbook on Spherical Astronomy, Cambridge University Press (1986)Sixth Edition.
- 4. Frank Shu, The Physical Universe, University of California (1982).
- 5. Roy A E and Clarke D, Astronomy principles and Practice, Institute of Physics (2003) Fourth Edition.
- 6. Swapan K Saha, Diffraction-limited imaging with large and moderate telescopes, World Scientific, (2007).

- 1. Chandrasekhar S, An Introduction to the Study of Stellar Structure, Dover Publications (1967).
- 2. Clayton D D, Principles of Stellar Evolution and Nucleosynthesis, University of Chicago Press(1983).
- 3. Kippenhahn and Weigert, Stellar Structure and Evolution, Springer (1990).
- 4. Binney, J. and Tremaine S., Galactic, Dynamics, Princeton University Press (1994).
- 5. Binney J, and Merrifield, Galactic Astronomy, Princeton University Press (1998).
- 6. K.D. Abhyankar, Astrophysics (Stars and Galaxies), Tata McGraw Hill (1992).
- 7. BaidyanathBasu, An Introduction to Astrophysics, Prentice Hall of India (2003).
- 8. Jayant V Narlikar, An Introduction to Cosmology, Cambridge University Press (2004).

YEAR-III	Cou	rse Co	de:		Ti	itle of th	e Paper	•		HRS/	WK	CREDITS
SEM-VI	19	ЕРН63	В		E	NERGY ELECTIV	PHYSICS /E – 3F			5		4
Course Out	comes											
CO1	Study	/ about	the Co	nventi	ional En	ergy So	urces					
CO2	Learr	about	the No	n-Con	vention	al Energ	y Source	es				
CO3	Acqu	ire Kno	wledge	of Bic	mass e	nergy						
CO4	Be fa	miliar v	vith the	Geot	hermal	energy						
CO5	Apply	the kr	owled	ge of E	nergy s	torage a	nd impa	cts of N	on-conv	entional	energy	
		Марі	oing of	cours	e outco	mes wit	h the pr	ogram s	pecific o	utcome	S	
Course	Pro	gramn	ne Outo	omes	POs	Pı	rogramn	ne Speci	fic Outco	omes PS	Os	Mean
Outcomes												Score of
COs												
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3.2	3.8	4.1	3.5	3	2.8	3.5	3.1	4	3	3.2	3.38
CO2	3.5	3.2	3.2	3	3.5	3.6	4	3.6	3	2.6	3.8	3.36
CO3	3.5	4.1	3.2	2.6	3	3.2	3	3.5	3.5	3.5	3	3.28
CO4	3.2	3.8	3	4	3	4	3.5	2.8	3.5	3	3.6	3.4
CO5	4	3.5	3.5	3.2	3.5	2.5	3.5	3	4	3	3.5	3.38
				٨	lean O	erall Sc	ore					3.36
				Resu	lt: The	Score fo	r this co	urse is H	ligh			<u>I</u>
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	82	1-100%
Scale		:	1		2		3		4			5
Relation		0.0-1.0 1.1-2.					2.1-3.0		3.1-4	.0	4	1.1-5.0
Quality		Very	Poor		Poor	I	Moderat	е	High	1	Ve	ery High
						Value S	Scaling				1	
Mean S	core of		Tot otal No	al Valu		ang Mear Over	Mear	n Overal	l Score o		otal Mean Total No.c	

UNIT I (15 hours)

Conventional Energy Sources: World's reserve of commercial energy sources and their availability-various forms of energy- renewable and conventional energy systems- comparison and natural gas – availability –statistical details-applications- merits and demerits

UNIT II (15 hours)

Non-Conventional Energy Sources: Renewable energy sources- solar energy- nature of solar radiation- components-solar heaters- crop dryers- space cooling-solar ponds-solar cookers-water desalination- photovoltaic generation basics- merits and demerits of solar energy

UNIT III (15 hours)

Biomass energy-classification- photosynthesis- biomass conversion process- gobar gas plantswood gasification- ethanol from wood- advantages and disadvantages of biomass as energy source

UNIT IV (15 hours)

Geothermal energy- wind energy- ocean thermal energy conversion(OTEC)-energy from waves and tides(basic ideas, nature, applications, merits and demerits)

UNIT V (15 hours)

Energy storage and impacts of Non-conventional energy: Conversion of energy-patterns of energy consumption in domestic, industrial, transpotation, agricultural sectors- conservation principles in these sectors- energy crisis and possible solutions- energy options for the developing countries- energy storage and hydrogen as a fuel (basics)-impact due to non-conventional energy sources-global warming

TEXT BOOKS

1. Rajamaanar, 2004, Environmental Studies.

REFERENCE BOOKS

1. Sukhatme, Solar Energy, McGraw-Hill Inc., US, 2nd Revised Edition,1997.

YEAR- III	DDACTICAL VII	PHP606
SEMESTER - VI	PRACTICAL -VI	HRS/WK-6
PRACTICAL - 6		CREDIT-3

(Any Twelve out of Sixteen can be selected)

- 1. Construction of a full wave rectifier-solid state using four diodes
- 2. 5V Ic regulated power supply characteristics
- 3. RC-coupled amplifier using transistor- Double stage(voltage gain and variation with load)
- 4. Hartley oscillator
- 5. Colpitt's oscillator
- 6. NAND, NOR universal gates
- 7. Half adder and Full adder mixture of gates
- 8. Half subtractor and Full subtractor- mixture of gates
- 9. Multiplexer and demultiplexer
- 10. Microprocessor programming 8-bit Addition and Subtraction.
- 11. Microprocessor programming 8-bit Multiplication and Division.
- 12. RS, D-flip flop, Clocked RS Flip flop using NAND gates only
- 13. Four bit ripple counter
- 14. Verification of De Morgan's theorem.
- 15. Basic logic gates using transistor –AND, OR & NOT gates.
- 16. OP AMP inverting-Non inverting-Summing-Difference amplifier-Voltage follower-Averager

YEAR-III	Cou	rse Co	de:		Ti	tle of th	ne Paper	:		HRS/	WK	CREDITS
SEM-VI	19	9SPH61	L				TER LITE			4		2
Course Outo	comes		,						.,			
CO1	Impa	rt basio	c level a	apprec	iation _l	orogran	me for	the com	mon ma	an		
CO2	Use t	he con	nputer	for bas	sic purp	oses of	prepari	ng his p	ersonne	l/busine	ss letters	5
CO3	Using	the co	mpute	ers and	enjoy	in the w	orld of	nforma	tion Tec	hnology		
CO4	Be fa	miliar	with ma	aking s	mall pr	esentat	ions					
CO5	Apply	the kı	nowled	ge of C	Origin s	oftware	& Adok	e photo	shop			
		Марр	ing of	course	outco	nes wit	h the pr	ogram s	pecific	outcome	es	
Course	Pro	gramn	ne Outo	comes	POs	Pr	ogramn	ne Speci	fic Outc	omes PS	Os	Mean
Outcomes												Score of
COs												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3.2	2.8	4.1	3.5	3	2.8	3.5	3.1	4	3.4	3.2	3.32
CO2	3.5	3.2	3	3	3.5	3.6	4	3.6	3	2.6	3.5	3.3
CO3	3.5	4.2	3.2	2.8	3	3.2	3	3.5	3.7	3.5	3.2	3.34
CO4	3.2	3.6	3	4	3	3.5	3.5	2.8	3.5	3.1	3.6	3.34
CO5	4.1	3.5	3.7	3.2	3.5	2.5	3.5	3	4.1	3.2	3.5	3.43
		I	<u>L</u>	М	ean Ov	erall Sco	ore	I	ı	1		3.34
				Resul	t: The S	Score fo	r this co	urse is I	High		-	
Mapping		1-2	20%		21-40%	6	41-60%		61-80)%	8:	1-100%
Scale			1		2		3		4			5
Relation		0.0	-1.0		1.1-2.0)	2.1-3.0		3.1-4	.0	4	1.1-5.0
Quality		Very	Poor		Poor	1	Moderat	e	Higl	า	Ve	ery High
						Value S	Scaling				1	
Mean Sc	ore of		Tot	al Valui of POs		ong Meat Overs	Mear	n Overal	l Score o	of COs=	otal Mea Total No.	

UNIT-I: COMPUTER, COMMUNICATIONS AND COLLABORATION (12 Hours)

Introduction - Components of Computer System -Concept of Hardware and Software -Application Software-Systems software-Concept of computing, data and information- Applications of IECT - egovernance - Connecting keyboard, mouse, monitor and printer to CPU - Checking power supply-Operating system -The User Interface -Task Bar-Icons-Menu-Running an Application. Introduction-Basics of E-mail- Using E-mails -Opening Email account-Mailbox: Inbox and Outbox -Creating and sending a new E-mail - Replying to an E-mail message -Forwarding an E-mail message -Sorting and Searching emails-document collaboration -Netiquettes

UNIT-II: UNDERSTANDINGWORD PROCESSING (12 Hours)

Introduction-Opening Word Processing Package -Menu Bar-Using The Help -Using The Icons Below Menu Bar-Opening and closing Documents - Opening Documents - Save and Save as -Page Setup -Print Preview -Printing of documents -Text Creation and manipulation -Document Creation - Editing Text - Text Selection -Cut, Copy and Paste -Spell check-Thesaurus -Formatting the Text- Font and Size selection -Alignment of Text - Paragraph Indenting -Bullets and Numbering -Changing case - Table Manipulation -Draw Table -Changing cell width and height -Alignment of Text in cell -Delete / Insertion of row and column -Border and shading

UNIT-III: USING SPREAD SHEET

(12 Hours)

Introduction -Elements of Electronic Spread Sheet-Opening of Spread Sheet-Addressing of Cells-Printing of Spread Sheet-Saving Workbooks-Manipulation of Cells -Entering Text, Numbers and Dates -Creating Text, Number and Date Series- Editing Worksheet Data-Inserting and Deleting Rows, Column -Changing Cell Height and Width-Formulas and Function-Using Formulas-Function

UNIT-IV: MAKING SMALL PRESENTATIONS

(12 Hours)

Introduction - Using PowerPoint -Opening A PowerPoint Presentation- Saving A Presentation - Creation of Presentation-Creating a Presentation Using a Template-Creating a Blank Presentation-Entering and Editing Text-Inserting And Deleting Slides in a Presentation-Preparation of Slides-Inserting Word Table or An Excel Worksheet-Adding Clip Art Pictures-Inserting Other Objects-Resizing and Scaling an Object -Presentation of Slides-Viewing A Presentation-Choosing a Set Up for Presentation-Printing Slides And Handouts-Slide Show -Running a Slide Show-Transition and Slide Timings - Automating a Slide Show

UNIT-V: ORIGIN SOFTWARE & ADOBE PHOTOSHOP (12 Hours)

Origin 8-Data analysis and Graphing workspace-Workbook-Worksheet& Worksheets column-Importing and Exporting data-Graphing: Customizing and Formatting the graph-Fitting analysis Introduction to Adobe photoshop, creating and saving a document in photoshop, page layout and back ground ,ruler, paletts, tool box, ,saving files, reverting files, closing files. image size and resolution ,image editing, colour modes and adjustments , Zooming & Panning an Image,, , Rulers, Guides & Grids- Cropping & Straightening an Image,image backgrounds , working with pen tool, save and load selection-working with erasers-working with text and brushes-Colour manipulations: colour modes- Levels — Curves- Seeing Colour accurately - Patch tool — Cropping-Reading your palettes - Dust and scratches- Advanced Retouching- smoothing skin Layers: Working with layers- layer styles-opacity-adjustment layers

- 1. Fundamentals of Computers by ReemaThareja from Oxford University Press
- 2. Photoshop: Beginner's Guide for Photoshop Digital Photography, Photo Editing, ColorGrading & Graphic...19 February 2016 by David Maxwell

UG THEORY EXAMINATION

Continuous internal assessment (CIA) UG (25 marks)

Two internal Examinations
 Assignment / Seminar
 Attendance
 Two internal Examinations
 5 marks
 5 marks

Total 25 marks

External Examination (75 marks)

Time: 3 Hours Max. Marks: 75

Section – A (10 x 2 = 20)

(Two questions [least of one problem] from each Unit)

Section – B (5 \times 5 = 25)

(Answer all the questions)

(One question from each Unit; either or pattern; any one question should have problem in one

part)

Section C (3 \times 10 = 30)

(Answer any Three Questions out of five)

(One Question from each unit and may have subdivisions; the sub divisions may have problems)

PRACTICAL EXAMINATION

Continuous internal assessment (CIA) (40 marks)

Based on the periodical evaluation of record &

Experiments assessed by the staff in charge - 20 marks
Model Practical - 20 marks

External Examination (60 marks)

3 Hrs. Exam Total Marks: 60

Experiment 50 MarksRecord 10 Marks