ST. JOSEPH'S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1

PG & RESEARCH DEPARTMENT OF PHYSICS

B.Sc (Physics) SYLLABUS 2018-2019

P.G. and Research Department of Physics B.Sc Physics Curriculum Template

First Year

Semester	Part	Subject Code	Subject Title	Hours	Credits
Ι		LT101S	Tamil – I / Hindi – I / French - I	4	3
	II LE101S		English-I	4	3
	III	PH101	Properties of Matter & Acoustics	8	6
Ι	III	PHP01	Main Practical-I	3	2
	III	AMT101S	Allied- Mathematics-I	8	6
	IV	ECL101	Skill Based Courses	3	2
	Total			30	22
	Grand Total Cr	edits		22	
	Ι	LT202	Tamil – II / Hindi – II / French – II	4	3
	II	LE202	English-II	4	3
II	III	PH202	Thermal and Statistical Physics	8	6
	III	PHP02	Main Practical-II	3	2
III		AMT202	Allied- Mathematics-II	8	6
	IV EPD2 Total		Skill Based Courses	3	2
				30	22
	Grand Total Cr	edits			22

Second Year

Semester	Part	Subject	Subject Title	Hours	Credits
		Code			
	Ι	LT303	Tamil – III	4	3
			/ Hindi – III / French –III		
	II	LE303	English-III	4	3
	III	PH303T	Basics of Newtonian and	8	6
			Classical Mechanics		
III	III	PHP03	Main Practical-III	3	2
	III	ACH301	Allied- Chemistry	5	4
	III	ACHP01	Chemistry Practical	3	2
	IV APCM301 Skill Based Course		Skill Based Courses	3	2
	Total			30	22
	Grand Total	Credits			22

	Ι	LT401	Tamil – IV	4	3
			/ Hindi – IV / French – IV		
	II	LE402	English-IV	4	3
	III	PH404	Electricity & Magnetism	8	6
	III	PHP04	Main Practical-IV	3	2
	III	IBC401	Inter Disciplinary Course (IDC)*	5	4
IV	III		Practical (IDC)*	3	2
	IV	EVS401	Skill Based Courses	3	2
	Total			30	22
	Grand Total Credits				22

*IDC: Students should select any one paper offered by other than Physics Department

(IDC)* = Bio Physics Elective Subject (Department of Bio-Chemistry)

Semester	Part	Subject	Subject Title	Hours	Credits
		Code			
	III	PH505	Optics & Spectroscopy	5	4
	III	PH506S	Atomic Physics	5	4
			Solid State Physics	5	4
	III	PH508	Basic Electronics	5	4
	III	EPH509	Digital electronics and	4	4
V			microprocessor (Elective V)		
		EPH510	Materials science(Elective V)	4	4
	III	PHP05	Main practical-V	6	4
	Total			30	24
	Grand	Total Cred	its		24
	III	PH610	Relativity, Quantum Mechanics &	5	4
			Mathematical Methods		
	III	PH611	Nuclear & Radiation Physics	5	4
	III	PH612S	Laser & Fibre Optic	5	4
			Communication		
	III	PH613	Applied Electronics	5	4
VI	III	EPH614S	Numerical methods & basic	4	3
			computer programming (Elective		
			VI)		
	III	EPH613	Energy Physics(Elective VI)	5	3
	III	PHP06	Main Practical –VI	6	4
	Total			30	23
	IV	JPH601	Electronics Project		3
	IV		Extra-Curricular Activities		2
	Grand	Total Cred	its		28

Third Year

THIRD YEAR

SEMESTER-V (ELECTIVE-I)

А.	DIGITAL ELECTRONICS
В.	MATERIAL SCIENCE

SEMESTER – VI (ELECTIVE-II)

A.	NÚMERICAL METHODS & COMPUTER
	PROGRAMMING
В.	ENERGY PHYSICS

YEAR- I	C	ourse			С	ourse '	se Title: HRS/WK				CREDIT	
SEM- I	C	Code:		PRO	PERT	IES O	FMATT	ER &		4		3
	P	H101			A	COUS	TICS					
Course Ou	tcomes	8										
CO1	To st	To study the basics of elasticity and its importance in beams										
CO2	Unde	rstand	the be	nding	of bean	ns						
CO3	Unde	erstand	l the ba	asics o	of Surf	ace Te	ension an	d its a	pplicatio	ns		
CO4	Unde	erstand	l the w	vaves a	and osc	cillatio	ns during	g prop	agation			
CO5	To st	udy th	e prod	luctior	n of Ul	trason	ics & aco	oustics	s of build	ing		
	N	Iappin	g of co	ourse o	outcom	es with	n the pro	gram	specific o	utcomes	5	
Course	Prog	gramm	ne Out	comes	POs	Pro	ogramme	Speci	fic Outco	mes PS	Os	Mean
Outcomes												Score of
Cos												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO:	3 PSO4	PSO5	PSO	5
CO1	3	2.5	4.1	3.5	3	2.5	3	3.1	4	3.2	3.2	3.19
CO2	3.3	3.2	3	3	3.5	2.8	4	3.6	3	2.3	3.5	3.2
CO3	3.5	4.2	3.5	2.8	3	3.2	3.5	3.5	3.7	4	3.2	3.46
CO4	3.2	3.8	3	4.2	3	3.5	3.5	2.8	3.6	3.5	3.6	3.42
CO5	4.3	3.5	3.7	3.2	3.8	2.5	3.5	3.2	4.3	3.2	3.5	3.51
				Me	an Ove	erall Sc	ore					3.36
			R	esult:	The So	core fo	r this cou	irse is	High			
Mapping		1-2	0%		21-40%	6	41-60%		61-80	%	81	-100%
Scale	1 2				3		4			5		
Relation	n 0.0-1.0 1.1-2.0)	2.1-3.0			3.1-4.0		.1-5.0	
Quality		Very	Poor		Poor		Moderate	e	Hig	h	Ve	ry High
						Value S	caling					
Mean Se	Score of COs= Total Values Total No.of POs & PSOs						Mean (Dverall	Score of	COs = -	otal Mea Fotal No.	

UNIT- I: ELASTICITY-I

Hooke's law - stress - strain diagram - Modulus of elasticity - Relation between elastic constants - Poisson's ratio- Expressions for Poisson's ration in terms of elastic constants - work done in stretching and twisting a wire - Twisting couple on a cylinder — Torsional pendulum with and without masses- Rigidity modulus and moment of inertia – Rigidity modulus by static torsion - q, n and σ by Searle's method

UNIT- II: BENDING OF BEAMS

Cantilever – Expression for bending moment – Expression for depression – Cantilever (static & dynamic methods)– Expression for time period and Experiment to determine Young's Modulus - Non-Uniform bending - Uniform bending - expressions -Experiment to determine Young's modulus using pin & microscope and optic lever -Experiment to determine Young's modulus by Koenig's method (Non-Uniform bending).

UNIT-III: FLUIDS

(24 Hours) Surface Tension - Molecular Interpretation - dimensions of surface tension - Excess of pressure over curved surfaces - Application to spherical and cylindrical drops and bubbles - Variation of surface tension with temperature - Jaegar's method Viscosity: Co-efficient of viscosity and its dimensions - Rate of flow of liquid in a capillary tube - Poiseuille's formula - Experiment to determine co-efficient of viscosity of a liquid – variation of viscosity of a liquid with temperature and pressure -Viscosity of a gas - Rankine's method Applications of viscosity.

UNIT-IV: WAVES AND OSCILLATIONS

Transverse and longitudinal waves - Equation of wave motion - Plane Progressive wave - velocity of transverse wave on a string - Superposition of waves -Interference, reflection and transmission of waves - Resonance - intensity and loudness of sound - sound level - Decibel -Beats - stationary waves - organ pipes -Doppler effect.

UNIT-V: ULTRASONICS & ACOUSTICS

Ultrasonic - Piezo electric effect - Piezo electric crystal generator - Magnetostriction effect - Magnetostriction generator - Applications - Acoustics of buildings -Reverberation and time of reverberation & measurement - Sabine's formula -Absorption co-efficient – Acoustic aspects of halls and auditorium.

TEXT BOOKS:-

- 1. Brij Lal & N. Subrahmanyam, *Properties of Matter*, S. Chand Publications, 2002.
- 2. Murugeshan .R, Properties of Matter and Acoustics, New Delhi, S. Chand & Co, 2006.
- 3. Mathur D.S., Elements of *Properties of matter*, S. Chand, 2006.
- 4. Brij Lal & Subrahmanyam, Text Book of Sound, New Delhi: N. Vikas Publishing House, 2008.

(24 Hours)

(24 Hours)

(24 Hours)

6

(24 Hours)

REFERENCE BOOKS:-

- 1. Baldevraj., Science & Technology of Ultrasonic, Narosa, 2006.
- 2. Bajaj N.K., Physics of Waves & Oscillations, Tata McGraw Hill, 1988.
- 3. C.L. Arora, P.S. Hemine., Physics for Degree students. First B.Sc Physics, 2010.

YEAR – I
SEMESTER - I
CORE – PRACTICAL - 1

PRACTICAL – I

(Any nine out of the given 12 experiments)

- 1. Young's Modulus by Non-Uniform Bending Pin and Microscope
- 2. Young's Modulus by Non-Uniform Bending Optic Lever.
- 3. Rigidity modulus- Torsional Pendulum n of a wire (without masses)
- 4. Rigidity modulus -Torsional Pendulum n (with masses)
- 5. Sonometer Determination of Frequency of tuning fork.
- 6. Sonometer Determination of Specific Gravity of Solid and Liquid.
- 7. Surface tension by drop weight and Interfacial liquid– Drop Weight Method.
- 8. Comparison of Viscosity of two liquids
- 9. Focal Length and Refractive Index of Convex Lens (u-v method and conjugate foci methods for 'f' and Boy's method for R).
- 10. Spectrometer μ of the hollow Prism
- 11. Potentiometer Calibration of low range voltmeter.
- 12. Rigidity modulus by Static Torsion (mirror and telescope method).

YEAR- I SEM- II	C	ourse Code: H202T		THEF	RMAL	ourse ' AND PHYS	STATIS	TICAI		HRS/WI 8	K	CREDIT 6
Course Out	tcome	5									·	
C01	To a	cquire	knowl	edge	of trans	smissi	on of hea	at and th	ne laws	associa	ted wit	th them
CO2	To u	ndersta	and the	e natu	are and	the kir	netic theo	ory of g	ases			
CO3	To st	udy th	e conc	cepts	of gase	s at lo	w temper	ature				
CO4	To st	udy th	e laws	of th	nermody	ynamio	es and un	derstar	d their	applicat	tions	
CO5	To u	ndersta	and the	e con	cepts of	f statis	tical ther	modyn	amics a	nd its ap	oplicat	ions.
	Ν	Iappin	g of co	urse	outcom	es witl	n the prog	gram sp	ecific o	utcomes	5	
Course Outcomes Cos	Prog	gramn	ne Out	come	s POs	Pro	ogramme	Specifi	c Outco	mes PS	Os	Mean Score of CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	
CO1	4.5	4.8	4	4.5	4	4	4.2	3.5	4	4.5	4	4.18
CO2	3	3.5	4	4.5	4	4	4	4	3.5	4	2.5	3.73
CO3	4	4	4.5	3.5	4	3.5	3	3	3.5	4	3.5	3.68
CO4	3.5	3	3	3.5	4	4.5	4	4	3.5	3	3.5	3.59
CO5	4	3	3	3.5	3	3	3.5	3.2	3	3	3	3.15
					ean Ove							3.68
				esult:			r this cou				1	
Mapping		1-20% 21-40%			ó	41-60%		61-80	%	81	-100%	
Scale	1 2				3		4	0		5		
Relation			-1.0		1.1-2.0)	2.1-3.0		3.1-4			.1-5.0
Quality		very	Poor		Poor		Moderate	e	High	1	Ve	ry High
Mean So	Mean Score of COs= $\frac{Total Values}{Total No.of POs \& PSOs}$								Mean Overall Score of COs= Total Mean Scores Total No.of COs			

UNIT- I: TRANSMISSION OF HEAT

Thermal conductivity – good & bad conductors – Forbe's method - Lee's disc method– relationship between thermal and electrical conductivities - Wiedemann Franz's law - Radiation- Prevost's theory of heat exchanges - law of cooling – Black body radiation - Kirchhoff's law - Wien's laws of energy distribution in black body radiation - Wien's displacement law- Rayleigh-Jean's law -Plank's law – pyrometry solar constant – sources of solar energy & applications.

UNIT- II: KINETIC THEORY

Expression for pressure - Transport phenomenon – expression for mean free path - thermal conductivity and diffusion of gases - distribution of molecular velocities – energy distribution function - Degrees of freedom - equipartition law of energy - C_P , C_V and γ of a gas - theory of Brownian motion – Langevin's theory.

UNIT- III: GASSES AND LOW TEMPERATURE PHYSICS (24 Hours)

Molar heat capacities – Mayer's relation reversible adiabatic and isothermal changes– equations – Clement and Desormers method of determining C_p / C_v – Andrew's work on Co₂– regenerative cooling – the Linde process – Liquid air, oxygen, hydrogen and Helium – He I and He II – super fluidity - practical applications of low temperatures – refrigerating machines– electroflux refrigerator – Frigidaire – air conditioning machines – effects of CF₂ and Cl₂ on Ozone layer.

UNIT- IV: THERMODYNAMICS

Intensive and extensive variables – I & II laws of thermodynamics – reversible and irreversible processes – Heat engines – Otto and diesel engines – thermodynamic scale of temperature - entropy - change of entropy in reversible and irreversible processes – T-S diagram– entropy for a perfect gas - third law of thermodynamics.

UNIT- V: STATISTICAL THERMODYNAMICS (24 Hours)

First Latent heat equation (Clausius – Clapeyron equation), effect of pressure on melting and boiling point – second Latent heat equation - Maxwell's Thermodynamical relations– derivations - Phase space – microstates and macrostates.

TEXT BOOKS:-

- 1. Mathur D.S., Heat and Thermodynamics, S. Chand, 2014.
- 2. M. Narayanamoorthy and N. Nagarathinam, Heat, National publishing Co, Chennai, Eight Edition, 1987.
- 3. Murugeshan.R., Thermal Physics., S. Chand & Co., 2009.
- 4. Brijlal and Subramanyam, Heat and Thermodynamics, S. Chand & Co., 2000.
- 5. Gupta and Kumar, *Elements of Statistical Mechanics*, Meerut: Pragathi Prakashan, 2004.

REFERENCE BOOKS:-

1. Nelkon Parker, *Advanced Level Physics*, (Vol.V), Arnold Publication, Berkely Series, 1995.

(24 Hours)

(24 Hours)

(24 Hours)

2. Dr. Ilangovan and Dr.D. Jayaraman,, Thermal Physics, S. Chand & Co., 2014.

YEAR – I		PHP202
SEMESTER - II	PRACTICAL - II	HRS/WK - 3
CORE – PRACTICAL - 2		CREDIT - 2

(Any nine out of the given 12 experiments)

- 1. Young's Modulus by Uniform Bending Pin and Microscope
- 2. Young's Modulus by Uniform Bending Optic Lever.
- 3. Thermal Conductivity of the Bad Conductor Lee's Disc Method.
- 4. Specific heat capacity of liquid by method of mixtures (Half-time Correction).
- 5. Specific heat capacity of liquid by Newton's Law of cooling.
- 6. Spectrometer i-d Curve.
- 7. Focal Length R & μ of a concave lens.
- 8. Potentiometer Calibration of an Ammeter.
- 9. Sonometer Comparison of Linear Densities
- 10. Air wedge thickness of a wire
- 11. M and B_H TanC Deflection and vibration Magnetometer.
- 12. Figure of merit of a table galvanometer.

YEAR- II SEM- III	C	ourse Code: I303T		Course Title: BASICS OF NEWTONIAN &CLASSICAL MECHANICS						K	CREDIT 6	
Course Ou	tcomes	5										
CO1	To m	ake th	e stud	ents to	o under	stand (the gravi	ity in th	e variou	is shape	es	
CO2	To u	To understand concepts of projectiles and friction										
CO3	To st	udy th	e conc	epts s	space s	cience						
CO4	Get t	he kno	wledg	e of F	Rockets	and	satellites	5				
CO5	To ac	cquire	knowl	edge	of class	sical pl	nysics					
	Ν	Iappin	g of co	ourse	outcom	es with	the prog	gram sj	pecific o	utcomes	5	
Course	Prog	gramn	ne Out	comes	POs	Pro	gramme	Specif	ic Outco	mes PS	Os	Mean
Outcomes												Score of
Cos												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
CO1	3	3.5	3	3.2	3.5	4	3	3	3.5	3.5	4	3.38
CO2	4	4	3.5	4	4	4	2.5	3.5	4	3.5	4	3.73
CO3	4	3.5	4	3.5	3	3.5	4	4	4	3	3.5	3.64
CO4	3.5	3.5	4	3.5	3.5	3.5	4	3.5	3.5	3.5	3.5	3.59
CO5	4	4	3.5	3.5	4	4	3.5	4	4	3.5	3	3.73
				Mean Overall Score					3.61			
	1			esult:	The So	core for	this cou	ırse isH				
Mapping		1-2	0%	0 21-40% 41-60% 61-80% 81				81	-100%			
Scale]	l	2			3		4			5
Relation			-1.0		1.1-2.0		2.1-3.0		3.1-4			.1-5.0
Quality		Very	Poor		Poor		Moderate	e	High	1	Vei	ry High
Mean So	$Score of COs = \frac{Total Values}{Total No.of POs \& PSOs}$						caling Mean (Overall :	Score of	COs = -	otal Meas "otal No.	

(24 hours)

Statics: Centre of gravity- Centre of gravity of a solid and hollow cone- Solid and hollow hemisphere-Thrust-Centre of pressure- Vertical rectangular lamina.

Hydrostatics: Law of floatation- Metacenter- Metacentric height of a ship. **Hydrodynamics**: Equation of continuity of flow- Energy of the fluid- Euler's Equation of unidirectional flow -Bernoulli's theorem.

UNIT-II

UNIT-I

Dynamics: Rigid body- Moment of inertia- Radius of gyration- moment of inertia of a solid cylinder, cylindrical shell, solid sphere, spherical shell, hollow sphere with external and internal radii- Bifilar pendulum- Compound pendulum-Determination of g and k.

UNIT-III

Projectile: Projectile motion- Range of a projectile, maximum height reached and angle of projection for maximum height- Resultant velocity at a given instant(Definitions only)- Projectile on an inclined plane

Friction: Laws of friction- Sliding friction - Angle of friction- Cone of friction- acceleration down an inclined plane- Rolling friction and stability.

UNIT IV

Space Science: Rockets and satellites- Basic principles of rocket motion Rocket equation, Thrust and acceleration- Escape velocity of multistage rockets- Liquid, solid and cryogenic - Propellant rockets- Space shutter- Orbital velocity- Launching of satellites - Types of satellite Orbits.

UNIT-V

Classical Mechanics: Mechanics of a system of particles- Generalized Co-ordinatestransformation equations- configuration space- principle of Virtual work- D' Alembert's principle- Lagrange's equations and its applications-Compound pendulum - Atwood's machine.

TEXT BOOKS:-

- 1. Narayanamoorti and Nagarathnam, *Statics, Hydrostatics and Hydrodynamics*, National Publishing Company, III Edition, 1997.
- 2. Murugeshan, Mechanics and Mathematical Methods, S.Chand and Co., 2005.
- 3. Gupta Kumar and sharma, Classical Mechanics, Pragati Prakashan, 2001.
- 4. C.L. Arora, Mechanics, S. Chand Publishing, 2014.

REFERENCE BOOKS:

- 1. Mathur. D.S., II Edition, Mechanics, S. Chand & Co., 2006.
- Feynmann R.P, Leighton R.B and Sands M, Ther feynmann, *Lectures on Physics*, Vols 1, 2 and 3-Narosa, New Delhi., 1998.
- 5. Brijlal and Subramaniyam, *Mechanics and Electrodynamics*, S. Chand, Kindle Edition, 2005.
- 6. Bhatia V.B., Classical Mechanics, Tamil Nadu Book House, 1997.

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1

(24 hours)

(24 hours)

(24 hours)

34 b

(24 hours)

YEAR - II
SEMESTER – III
CORE – PRACTICAL – III

(Any nine out of the given 12 experiments)

- 1. Compound Pendulum
- 2. Bifilar Pendulum
- 3. Field along the axis of Circular Coil B_H
- 4. Young's modulus-cantilever oscillations dynamic method-pin and microscope.
- 5. Young's modulus cantilever scale and telescope
- 6. Sonometer ac frequency using steel wire
- 7. Sonometer ac frequency using brass wire
- 8. Spectrometer-grating-normal incidence method
- 9. Spectrometer-grating-minimum deviation method
- 10.Surface Tension of the Liquid Capillary Rise Method
- 11. Young's Modulus by Koenig's method(Non-Uniform Bending)
- 12. Potentiometer- Resistance- Specific Resistance of a wire

YEAR- III SEM- III	C	ourse Code: PH301				ourse T ED PH	itle: [YSICS	}	I	IRS/WI 5	K	CREDIT 3
CO1	under	stand t	he pro	perties	s of ma	atter & a	acoustic	2S	i			
CO2	unde	rstand	the ele	ectricit	ty & n	nagnetis	m in ele	ectrical	circuit			
CO3	under	stand t	he prin	cipal c	of optic	es and a	pplicati	ons				
CO4	Occu	r the ba	asic kn	owledg	ge of re	lativity	& quar	ntum me	echanics	5		
CO5	Expla	ain the	vario	us elec	etric IC	C in elec	ctrical c	ircuit				
Mapping of course outcomes with the program specific outcomes												
Course	Prog	gramm	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean
Outcomes												Score of
Cos												
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5
CO1	3.5	4	3.5	3	3	3	3	2.5	3.5	3	3.5	3.23
CO2	3.5	4	4	4	4	2.5	2.5	4	4	4	4	3.68
CO3	3	3.5	3	2.5	4	4	4	3.5	3.5	4	4	3.55
CO4	3	3.5	2.5	3.5	4	3.5	4	3.5	4	3.5	3.5	3.50
CO5	4	3.5	4	3.5	3.5	4	3.5	3.5	3.5	3.5	3.5	3.64
	1		L	Me	an Ove	erall Sco	re		I	I		3.52
			R	esult: '	The So	core for	this cou	ırse isHi	igh			
Mapping		1-2	0%		21-40%	6	41-60%		61-80	%	81	-100%
Scale		1	l		2		3		4			5
Relation	n 0.0-1.0 1.1-2)	2.1-3.0		3.1-4.0			.1-5.0
Quality		Very	Poor		Poor	Moderate High V					Ve	ry High
Value Scaling												
Mean Se	$Mean Score of COs = \frac{Total Values}{Total No.of POs \& PSOs} Mean Overall Score of COs = \frac{Total Mean Scores}{Total No.of COs}$											

UNIT- I: PROPERTIES OF MATTER & ACOUSTICS

Bending of beams: Non uniform bending-Torsion of a wire-Torsional bendulum.

Sound: Transverse vibrations of a stretched string- expression for the velocity of transverse wave - laws of transverse vibrations- A.C frequency measurement using sonometer- velocity of sound in a gas-Ultrasonics-production and uses.

UNIT-II: ELECTRICITY & MAGNETISM

Capacitor- energy of charged capacitors- loss of energy due to sharing of charges DC circuits – growth and decay of charge containing resistance and capacitor (RC) circuit & inductance and resistance (LR) circuit - potentiometer-measurement of internal resistance of a cell and unknown resistances – Moment, Tan C and pole strength of a magnet

UNIT-III: OPTICS

Interference-Wedge shaped film-Air wedge-Description- Test for Optical flatness of glass plate-Determination of diameter of a thin wire by air wegdge-spherical aberration - minimizing spherical aberration by using two thin lenses in contactchromatic aberration- achromatic combination of two thin lenses in contact- optical activity-specific rotatory power-polarimeter

UNIT- IV: RELATIVITY & QUANTUM MECHANICS (15 hours)

Elements of relativity and Postulates of theory of relativity- Lorentz transformation equations- derivation Addition of velocities-twin paradox Minkowski's four dimensional space.

Quantum mechanics: De Broglie's waves - Uncertainty principle- postulates of wave mechanics- - Schr dinger's equation (Time dependent one dimensional) - application to a particle in a box.

UNIT- V: ELECTRONICS

(15 hours) FET-characteristics-parameters-FET as amplifier-IC-SSI LSI MSI-VLSI IC fabrication-Diode-flip flops-RS flip flops-D flip flops-JK flip flops.

Text Books

- 1. Principle of physics-Brijlal Subramaniyam
- 2. R. Murugesan, Allied Physics, S. Chand Publishing, 2005.
- 3. Brijlal Subramaniyam, *Text book of Sound*, Vikas Publishing, 2nd Revised Edition.
- 4. V.K.Metha. S Chand, Principle of Electronics, 7th Revised Edition, 2005.

(15 hours)

(15 hours)

(15 hours)

YEAR – II
SEMESTER – III
ALLIED

LIST OF PRACTICALS

(Any TEN out of the Thirteen experiments can be selected)

- 1. Determination of Young's modulus –non-uniform bending -Pin and microscope.
- 2. Determination of Rigidity modulus- Torsional pendulum (without masses).
- 3. Determination of Rigidity modulus Static torsion
- 4. Sonometer –frequency of tuning fork.
- 5. Sonometer A.C frequency Steel and Brass wire.
- 6. Air wedge thickness of a wire.
- 7. Spectrometer Grating-Minimum deviation
- 8. Potentiometer Measurement of Internal resistance of a cell.
- 9. Figure of merit of a galvanometer (Table galvanometer).
- 10. Construction of AND, OR NOT gates using diodes and transistors.
- 11. NAND gate as a universal gate.
- 12. Field along the axis of a circular coil-deflection magnetometer- B_H and M-Tan C.
- 13. RS- Flip flop, Clocked RS Flip flops.

YEAR- II SEM- IV	C	ourse Code: I404Q]	ELEC'	ourse T FRICI AGNET	TY AN	D	HRS/WK 8			CREDIT 6	
Course Ou	tcome	S											
CO1	To U	Inderst	and T	he Ele	ctrosta	tics Co	oncept A	And The	e Laws .	Associa	ted W	ith Them	
CO2	To a	To acquire knowledge of chemical effects of electric current											
CO3	To st	To study the concepts of DC circuits											
CO4	To st	udy th	e basi	cs of A	AC								
CO5	To u	To understand the concepts of magnetic materials											
	Ν	Iappin	g of co	ourse	outcom	es with	the pro	gram sp	ecific o	utcomes	5		
Course Outcomes Cos	Pro	gramn	ne Out	comes	POs	Prog	Programme Specific Outcomes PSOs						
005	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	CO's	
CO1	1.1	3.5	1.2	3.3	2.2	4.4	4.3	4.1	4.5	3.6	2.4	3.14	
CO2	1.2	3.8	1.3	3.3	2.1	3.9	3.7	3.7	3.9	3.7	2.2	2.98	
CO3	1.6	3.8	1.2	3.1	2.3	4.8	4.1	3.8	3.8	3.9	2.5	3.17	
CO4	1.2	3.4	1.6	3.6	2.5	3.9	4.2	4.6	4.3	4.6	2.2	2.95	
CO5	1.4	4.0	1.1	3.7	2.2	4.0	3.9	4.2	4.5	4.3	2.1	3.21	
				-		erall Sco	-					3.09	
							this cou	ırse isH	-		0.1	1000/	
Mapping		1-2			$\frac{21-40\%}{2}$	Ó	41-60%		61-80	%	81	<u>l-100%</u> 5	
Scale					$\frac{2}{1120}$		3			4			
Relation Quality												ry High	
Value Scaling													
$Mean Score of COs = \frac{Total Values}{Total No.of POs \& PSOs} Mean Overall Score of COs = Total Mean State State$													

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1

UNIT I **ELECTROSTATICS**

Coloumb's law – electric intensity and electric potential – electrical images(any four examples)- electric intensity and potential due to an earthed conducting sphere applying the principle of electrical images- electric dipole – potential and intensity due to a dipole – capacity – capacitance of a spherical and cylindrical capacitor – energy of a charged capacitor – loss of energy due to sharing of charges

UNIT II CHEMICAL EFFECTS OF ELECTRIC CURRENT (24 hours)

Carey foster bridge - theory - Determination temperature co-efficient of resistance -Calibration of voltmeter - Ammeter - Using Potentiometer - thermoelectricity-Peltier's coefficient - Thomson coefficient - application of thermodynamics to a thermocouple and connected relations- thermoelectric diagram and uses.

UNIT III TRANSIENT CURRENT

(24 hours) Growth and decay of current in a circuit containing resistance and inductance -Growth and decay of charge in a circuit containing resistance and capacitor-Growth and decay of charge in a LCR circuit - condition for the discharge to be oscillatory frequency of oscillation.

UNIT IV A.C AND ELECTROMAGNETIC INDUCTION (24 hours)

Power in AC circuit - wattless current- choke coil construction and working of transformers- energy losses - AC motors - single phase, three phases - star and delta connection -electric fuses- circuit breakers.

Inductances in series and parallel-Self inductance of co-axial cylinders-energy stored in a magnetic field-time varying magnetic field-Single phase induction motor

UNIT V MAGNETIC PROPERTIES OF MATERIALS

Susceptibility- permeability- intensity of magnetization and the relation B = u(H+M), M-H and B-H curves for a magnetic material using magnetometer method and ballistic galvanometer method - Terrestrial magnetism - magnetic elements- dip circle.

TEXT BOOKS:

- 8th 1. Murugeshan R. Electricity and Magnetism, Edition. New Delhi, S. Chand & Co., 2006.
- 2. Brijlal and N. Subramanian, Electricity and Magnetism, Agra, Ratan & Prakash, 6th Edition.
- 3. Narayanamoorthy M & Nagarathnam N, Electricity and Magnetism, Meerut, National Publishing Co., 4th edition.
- 4. Tewari. K. K, *Electricity and Magnetism*, 3rd Edition, New Delhi, S. Chand & Co., 2001.
- 5. C.L. Arora, *Electricity and Magnetism*, S. Chand Publishing, 2014.
- 6. D.S. Mathur, *Electricity and Magnetism*, S. Chand, 12th Edition.

(24 hours)

(24 hours)

REFERENCE BOOK:

- 1. David J Griffith, *Introduction to Electrodynamics*, 2nd Edition, New Delhi, Prentice Hall of India Pvt. Ltd, 1997.
- 2. Sehgal D.L, Chopra K. L and Sehgal N. K, *Electricity and Magnetism*, New Delhi, Sultan Chand & Co.,
- 3. Brij Lal, Subramanian N and Jivan Seshan, *Mechanics and Electromagnetics*, New Delhi, Eurasia Publishing House Pvt .Ltd, 2005.

YEAR – II SEMESTER – IV CORE – PRACTICAL – IV

PRACTICAL – IV

 PHP404

 HRS/WK - 3

 CREDIT - 2

(Any nine out of the given 12 experiments)

- 1. Potentiometer -comparison of EMF
- 2. Potentiometer- high range voltmeter
- 3. Spectrometer-dispersive power of a grating
- 4. Spectrometer-dispersive power of a prism
- 5. P.O.Box -resistance-temperature coefficient
- 6. Field along the axis of a circular coil deflection magnetometer -M Null deflection method.
- 7. Carry Fosters bridge- temperature Co-efficient of Resistance
- 8. Field along the axis of a circular coil vibrational magnetometer
- 9. Variation of resistance with temperature (thermistor)
- 10. LCR Studies- Two Resistors- Two Capacitors Two Inductors

YEAR- III SEM- IV	C	ourse Code: PH401				ourse T ED PH	itle: IYSICS	}	I	IRS/WI 5	K	CREDIT 3	
CO1	under	stand t	he pro	perties	s of ma	atter &	acoustic	2S	i				
CO2	unde	rstand	the ele	ectricit	ty & n	nagnetis	m in ele	ectrical	circuit				
CO3	under	stand t	he prin	cipal c	of optic	es and a	pplicati	ons					
CO4	Occu	r the ba	asic kn	owledg	ge of re	lativity	& quan	ntum me	echanics	5			
CO5	Expla	ain the	vario	us elec	etric IC	C in elec	ctrical c	ircuit					
Mapping of course outcomes with the program specific outcomes													
Course	Prog	gramm	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean	
Outcomes												Score of	
Cos													
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5	
CO1	3.5	4	3.5	3	3	3	3	2.5	3.5	3	3.5	3.23	
CO2	3.5	4	4	4	4	2.5	2.5	4	4	4	4	3.68	
CO3	3	3.5	3	2.5	4	4	4	3.5	3.5	4	4	3.55	
CO4	3	3.5	2.5	3.5	4	3.5	4	3.5	4	3.5	3.5	3.50	
CO5	4	3.5	4	3.5	3.5	4	3.5	3.5	3.5	3.5	3.5	3.64	
	1		L	Me	an Ove	erall Sco	re		I	I		3.52	
			R	esult: '	The So	core for	this cou	ırse isHi	igh				
Mapping		1-2	0%		21-40%	6	41-60%		61-80	%	81	-100%	
Scale		1	l		2		3		4			5	
Relation	n 0.0-1.0 1.1-2)	2.1-3.0		3.1-4.0			4.1-5.0	
Quality		Very	Poor		Poor	Moderate High V					Ve	ry High	
Value Scaling													
Mean Se	core of	COs=		$Mean Score of COs = \frac{Total Values}{Total No.of POs \& PSOs} Mean Overall Score of COs = \frac{Total Mean Scores}{Total No.of COs}$									

UNIT- I: PROPERTIES OF MATTER & ACOUSTICS (15 hours)

Bending of beams: Non uniform bending-Torsion of a wire-Torsional bendulum.

Sound: Transverse vibrations of a stretched string- expression for the velocity of transverse wave - laws of transverse vibrations- A.C frequency measurement using sonometer- velocity of sound in a gas-Ultrasonics-production and uses.

UNIT-II: ELECTRICITY & MAGNETISM

Capacitor- energy of charged capacitors- loss of energy due to sharing of charges DC circuits – growth and decay of charge containing resistance and capacitor (RC) circuit & inductance and resistance (LR) circuit - potentiometer-measurement of internal resistance of a cell and unknown resistances – Moment, Tan C and pole strength of a magnet

UNIT-III: OPTICS

Interference-Wedge shaped film-Air wedge-Description- Test for Optical flatness of glass plate-Determination of diameter of a thin wire by air wegdge-spherical aberration - minimizing spherical aberration by using two thin lenses in contactchromatic aberration- achromatic combination of two thin lenses in contact- optical activity-specific rotatory power-polarimeter

UNIT- IV: RELATIVITY & QUANTUM MECHANICS (15 hours)

Elements of relativity and Postulates of theory of relativity- Lorentz transformation equations- derivation Addition of velocities-twin paradox Minkowski's four dimensional space.

Quantum mechanics: De Broglie's waves - Uncertainty principle- postulates of wave mechanics- - Schr dinger's equation (Time dependent one dimensional) - application to a particle in a box.

UNIT- V: ELECTRONICS

FET-characteristics-parameters-FET as amplifier-IC-SSI LSI MSI-VLSI IC fabrication-Diode-flip flops-RS flip flops-D flip flops-JK flip flops.

Text Books

- 5. Principle of physics-Brijlal Subramaniyam
- 6. R. Murugesan, Allied Physics, S. Chand Publishing, 2005.
- 7. Brijlal Subramaniyam, *Text book of Sound*, Vikas Publishing, 2nd Revised Edition.
- 8. V.K.Metha. S Chand, *Principle of Electronics*, 7th Revised Edition, 2005.

23

(15 hours)

(15 hours)

(15 hours)

YEAR – II
SEMESTER – IV
ALLIED

LIST OF PRACTICALS

(Any TEN out of the Thirteen experiments can be selected)

- 13. Determination of Young's modulus –non-uniform bending -Pin and microscope.
- 14. Determination of Rigidity modulus- Torsional pendulum (without masses).
- 15. Determination of Rigidity modulus Static torsion
- 16. Sonometer –frequency of tuning fork.
- 17. Sonometer A.C frequency Steel and Brass wire.
- 18. Air wedge thickness of a wire.
- 19. Spectrometer Grating-Minimum deviation
- 20. Potentiometer Measurement of Internal resistance of a cell.
- 21. Figure of merit of a galvanometer (Table galvanometer).
- 22. Construction of AND, OR NOT gates using diodes and transistors.
- 23. NAND gate as a universal gate.
- 24. Field along the axis of a circular coil-deflection magnetometer- B_H and M-Tan C.
- 13. RS- Flip flop, Clocked RS Flip flops.

YEAR-	C	ourse			С	ourse	Title:			H	IRS/WI	K	CREDIT
III	C	Code:	0)PTI(CS AN	D SPI	ECTRO	SCO	OPY		5		4
SEM- V	PH	1505S											
Course Ou	tcome	5											
CO1	Stud	y the b	asics o	of geo	metric	al opti	cs						
CO2	Unde	erstand	l the ba	asics o	of inter	ferenc	e and its	s app	olica	tions			
CO3	Unde	Understand the basics of diffraction and its applications											
CO4	Unde	Understand the basics of polarization and its applications											
CO5	Stud	Study the various spectroscopy tools in day-today life											
	N	Iappin	g of co	ourse o	outcom	es wit	h the pro	ograi	m sp	ecific ou	utcomes	5	
Course	Pro	gramn	ne Out	comes	POs	Pro	Programme Specific Outcomes PSOs M						
Outcomes													Score of
Cos													CO's
	PO1	PO2	PO3	PO4	PO5	PSO	1 PSO2	PS	SO3	PSO4	PSO5	PSO	5
CO1	3.5	4	3.5	3	3	3	3	2	.5	3.5	3	3.5	3.23
CO2	3.5	4	4	4	4	2.5	2.5		4	4	4	4	3.68
CO3	3	3.5	3	2.5	4	4	4	3	.5	3.5	4	4	3.55
CO4	3	3.5	2.5	3.5	4	3.5	4	3	.5	4	3.5	3.5	3.50
CO5	4	3.5	4	3.5	3.5	4	3.5	3	.5	3.5	3.5	3.5	3.64
				Me	ean Ove	erall Sc	core						3.52
			R	esult:	The So	core fo	r this co	urse	isHi	gh			
Mapping		1-2	0%		21-40%	6	41-60%	, D		61-80	%	81	-100%
Scale		-	1		2		3			4			5
Relation	0.0-1.0				1.1-2.0 2.1-3.0			3.1-4.0			.1-5.0		
Quality		Very	Poor		Poor	Moderate High Very High							ry High
	<u>.</u>				V	Value S	Scaling						
Mean S	core of	COs=	To Total N	tal Valı o.of POs			Mean	Over	all S	core of	COs = -	otal Mea "otal No.	

1) Subramaniam N & Brijlal, Optics, S. Chand & Co. Pvt. Ltd., New Delhi, 1990.

- 2) Khanna D R & Gulati H R, Optics, S. Chand & Co. Pvt. Ltd., New Delhi, 1979.
- 3) R. Murugesan, Optics and Spectroscopy S. Chand & Co. Pvt. Ltd., New Delhi, 2009.

REFERENCE BOOKS

Text Books

1. Jenkins A. Francis and White E. Harvey, Fundamentals of Optics, McGraw Hill Inc., New Delhi, 1976.

UNIT – I: GEOMETRICAL OPTICS

Spherical aberration and lenses - Methods of minimizing spherical aberration -Condition for minimum spherical aberration in the case of two lenses separated by a distance - Chromatic aberration in lenses - Condition for achromatism of two thin lenses (In contact and out of contact) - Coma - Ramsden and Huygens's eyepieces-Angular dispersion - Dispersive power - combination of prisms to produce dispersion without deviation – Deviation without dispersion _ Achromatic prisms Direct vision spectroscope – Constant deviation spectrometer – calculation of characteristic wave number of spectral lines.

UNIT – II: INTERFERENCE

Colours of thin films – Air wedge – Determination of diameter of a thin wire by air wedge - Test for optical flatness - Michelson's Interferometer - Theory -Applications - , thickness of thin transparent material and resolution of spectral lines - Brewster's fringes - Refractive index of gases - Jamin's & Rayleigh's Interferometers – Stationary waves in light.

UNIT III: DIFFRACTION

Fresnel diffraction – Diffraction at circular aperture, opaque circular disc, straight edge and narrow wire- Fraunhofer diffraction - single slit - double slit -Rayleigh's criteria – Resolving power of telescope, prism, microscope and grating.

UNIT – IV: POLARIZATION

Double refraction - Nicol prism - polarizer and analyzer - Huygens's explanation of double refraction in uniaxial crystals – Dichroism – polaroids and their uses – plane, circularly and elliptically polarized light – production and detection – Optical Activity - Fresnel's explanation of optical activity - Specific rotatory power - Determination using Laurent's half shade polarimeter - Kerr effect and Faraday effect.

UNIT - V: SPECTROSCOPY

Infrared spectroscopy, RAMAN, NMR, ESR - Principle -Instrumentation applications.

(15 hours)

(15 hours)

(15 hours)

(15 hours)

(15 hours)

- 2. Lipson S G, Lipson H and Tannhauser D S, *Optical Physics*, Cambridge University Press, 1995.
- 3. Raj M G, Fundamentals of Optics, Anmol Publications Pvt. Ltd, New Delhi, 1996.
- 4. D. Halliday, R. Resnick and J. Waler, *Fundamentals of Physics*, Wiley NY 6th Edition, 2001.
- 5. D Halliday, Resnick and K. S. Krane, *Physics*, 4th Edition Vols I & II, Wiley, 1994.
- 6. R. P. Feynman, R. B. Leighton and M. Sands, *The Feynman Lectures on Physics*, Vols.I, II and III Narosa, New Delhi, 1998.
- 7. G.Aruldhas, Spectroscopy, Vendeur Book Vistas (New Delhi, India), 2009.

YEAR- III SEM- V	C	ourse Code: 1506S				Course Title: HRS/WK MIC PHYSICS 5						CREDIT 4		
Course Ou	1		1						Ш		1			
CO1	Study	the ba	sics di	scharg	e phen	omenon	l							
CO2	Unde	rstand	the bas	sics of	atomic	structur	re							
CO3	Unde	rstand	the ion	izatio	n poten	tial and	splitting	of ener	gy levels	5				
CO4	Unde	Understand the basics of photoelectricity												
CO5	Study	Study the properties of X-rays												
	Ν	Iappin	g of co	ourse (outcom	es with	the prog	gram sj	pecific o	utcomes	5			
Course	Prog	Programme Outcomes POs Programme Specific Outcomes PSOs												
Outcomes												Score of		
Cos												CO's		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5		
CO1	1.4	3.3	1.1	3.1	2.3	4.2	4.2	4.1	3.8	4.7	2.3	3.13		
CO2	1.2	3.5	1.3	3.2	2.6	4.4	4.3	4.1	3.9	4.2	2.1	3.16		
CO3	1.6	3.8	1.4	3.2	2.6	4.8	4.6	3.9	3.8	4.0	2.4	3.28		
CO4	1.8	3.8	1.4	3.2	2.4	4.5	4.1	3.9	4.2	3.5	2.1	3.17		
CO5	1.2	3.6	1.1	3.3	2.9	4.1	4.4	4.0	4.1	4.3	2.1	3.19		
				Me	ean Ove	erall Sco	ore					3.186		
			R	esult:	The So	core for	this cou	ırse isH	igh					
Mapping		1-2	0%		21-40%	ó	41-60%		61-80	%	81	-100%		
Scale]	1		2		3		4			5		
Relation	n 0.0-1.0 1.1-2.			1.1-2.0)	2.1-3.0			3.1-4.0					
Quality	Very Poor Poor					r Moderate High Very Hi								
]	١	/alue So	caling				1			
Mean Se	core of	COs=		tal Valı o.of POs	ies s & PSOs		Mean C	Overall S	Score of	(') = -2()'	otal Mea ^c otal No.			

UNIT I: DISCHARGE PHENOMENON THROUGH GASES (15 hours)

Motion of a charge in transverse electric and magnetic fields – specific charge of electron – Dunnington's method – Magnetron method – positive rays – Thompson parabola method – Aston and Dempster's mass spectrograph.

UNIT II: ATOMIC STRUCTURE

Vector atom model – Pauli's exclusion principle – explanation of periodic table – various quantum numbers – angular momentum and magnetic moment – coupling schemes – LS and JJ coupling – spatial quantization – Bohr magnetron – Stern and Gerlach experiment. Spectral terms and notations – selection rules – intensity rule and interval rule – fine structure of sodium D lines – alkali spectra – fine structure of alkali spectra – spectrum of Helium.

UNIT III: IONISATION POTENTIAL AND SPLITTING OF ENERGY LEVELS (15 hours)

Excitation and ionization potential – Davis and Goucher's method – Zeeman effect – Larmor's theorem – Debye's explanation of normal Zeeman effect – Anomalous Zeeman effect – theoretical explanation- Lande's 'g' factor and explanation of splitting of D1 and D2 lines of sodium – Paschen Back effect – theory – Stark effect (Qualitative treatment only)

UNIT IV: PHOTOELECTRICITY

Photo electricity: Photoelectric emission laws – Lenard's experiment-Richardson and Compton experiment- Einstein photoelectric equation -experimental verification of Einstein's photoelectric equations by Millikan's experiment-photoelectric cells

UNIT V: X-RAYS

X-RAYS: Continuous and characteristic X-RAY spectra absorption of X-RAYS by matter- concept of reciprocal lattice, Compton effect-derivation of expression for change in wavelength-experimental verification

TEXTBOOKS

- 1. R. Murugeshan, Modern Physics, S. Chand & Co., New Delhi, 2009.
- 2. N. Subramanian and Brij Lal, Atomic and Nuclear Physics, S. Chand & Co., 2013.
- 3. J. B. Rajam, Atomic Physics, S. Chand Publishing Co., 2010.

REFERENCE BOOKS

- 1. A. B. Gupta and Dipak Ghosh, *Atomic Physics*, Books and Allied Publishers, 2nd Edition, 2009.
- 2. J. H. Hamilton and Yang, Modern Physics, McGraw Hill Publication, 1996.
- 3. A. Beiser, Concepts of Modern Physics, Tata McGraw Hill, New Delhi, 1997.
- 4. D. Halliday, R. Resnick and J. Walker, *Fundamentals of Physics*, Willey NY, 6th Edition, 2001.

(15 hours)

(15 hours)

(15 hours)

YEAR- III SEM- V	C	ourse Code: H507		SC		ourse T STATE	itle: PHYS	ICS	I	HRS/WI 5	K	CREDIT 4	
Course Ou													
CO1	Unde	rstand	the typ	es of t	oonds in	n solids							
CO2	To st	udy the	differ	ent X-	ray diff	raction	techniqu	ues					
CO3	Study	to the	type o	f diffe	rent typ	bes of m	agnetic 1	material	S				
CO4	Study	the pr	opertie	es of di	ielectric	es							
CO5	Unde	rstand	the phe	enome	non of	superco	nductivit	ty					
	N	Iappin	g of co	ourse	outcom	es with	the prog	gram sp	ecific o	utcomes	5		
Course	Pro	gramn	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean	
Outcomes												Score of	
Cos													
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5	
CO1	3.2	2.8	4.1	3.5	3	2.8	3.5	3.1	4	3.4	3.2	3.32	
CO2	3.5	3.2	3	3	3.5	3.6	4	3.6	3	2.6	3.5	3.31	
CO3	3.5	4.2	3.2	2.8	3	3.2	3	3.5	3.7	3.5	3.2	3.34	
CO4	3.2	3.6	3	4	3	3.5	3.5	2.8	3.5	3.1	3.6	3.34	
CO5	4.1	3.5	3.7	3.2	3.5	2.5	3.5	3	4.1	3.2	3.5	3.43	
				Me	ean Ove	erall Sco	ore					3.34	
			R	esult:	The So	core for	this cou	ırse isH	igh				
Mapping		1-2	0%		21-40%	ó	41-60%		61-80	%	81	-100%	
Scale		1	1		2		3		4			5	
Relation	n 0.0-1.0 1.1-2.)	0 2.1-3.0			.0	4	.1-5.0	
Quality	Very Poor Poor						Moderate High V					ry High	
	I				V	/alue Sc	aling	I			1		
Mean Se	core of	COs=		tal Valı o.of PO:	ies s & PSOs		Mean C	Overall S	core of	COs = -	otal Mea `otal No.		

Unit I : BONDS IN SOLIDS

Crystal lattice- primitive and unit cell- seven classes of crystals – Bravais lattice-Miller indices- structure of crystals- simple cubic, Hexagonal close packed structure-Face centred cubic structure, Body centered cubic structure, Simple cubic structure-Sodium chloride structure, Zinc Blende structure, Diamond structure

Unit II: X-RAY DIFFRACTION

Diffraction of x-rays by crystals-Bragg's law in one dimension-Experimental method in x-ray diffraction-Laue method, Rotating crystal method-Powder photograph method-von Laue's equations-Point defects- Line defects- Surface defects- Volume defects-Effects of crystal imperfections

Unit III: MAGNETISM

Different type of magnetic materials- Classical theory of Diamagnetism(Langevin theory)-Langevin theory of Paramagnetism – Weiss theory of Paramagnetism-Qualitative explanation of Heisenberg's Internal Field and Quantum Theory of Ferromagnetism.

Unit IV: DIELECTRICS

Fundamentals definitions in dielectrics – different types of electric polarization-Frequency and Temperature Effects on Polarization – Dielectric loss – Local Field on internal field Clausius-Mosotti Relation- Determination of Dielectric Constant – Dielectric Breakdown – Properties of Different types of insulating materials

Unit V: SUPERCONDUCTIVITY

Introduction-Meissner effect-Limitation- Type I& II Superconductivity-Vortex states-BCS Theory(Qualitative treatment only)-Josephson's effect-Copper pair tunneling.

TEXT BOOKS

- 1. K. Ilangovan, Solid State Physics, MJP Publication, 2012.
- 2. S.O. Pillai, Solid State Physics, New Age Science Publication, 2009.
- 3. Arumugam, *Materials Science*, Anuradha Publications, 2015.
- 4. Puri & Babber, Solid State Physics, S. Chand Limited, 2008.

REFERENCE BOOKS

- C. Kittel, An introduction to Solid State Physics, 5th Edition, Published by John Wiley & Sons Inc, 1976.
- 2. Dekker A.J. Solid State Physics, Mac Millon Ind. Ltd., 1985.
- 3. Ascroft & Mermin, Solid State Physics, Pacific Grove, CA: Brooks cole, 1976.
- 4. Gupta and Kumar, Solid State Physics, K Nath & Co., 2013.

(15 hours)

(15 hours)

(15 hours)

(15 hours)

(15 hours)

YEAR- III SEM- V	C	ourse Code: H508		B		ourse T ELEC'	Title: TRONI	CS	I	HRS/WI 5	K	CREDIT 4
Course Ou											·	
CO1	Unde	rstand	the bas	sic of s	emicor	nductor	devices					
CO2	Study	the w	orking	of rect	ifier ar	nd ampl	ifiers					
CO3	Study	the w	orking	of osc	illators							
CO4	Unde	rstand	the wa	veshap	oing and	d multiv	vibrators					
CO5	Unde	rstand	the app	olicatio	on of el	ectronic	cs in elec	trical cir	cuite			
	Ν	Iappin	g of co	ourse o	outcom	es with	the prog	gram sp	ecific o	utcomes	6	
Course	Pro	gramn	ne Out	comes	POs	Pro	gramme	Specifi	c Outco	mes PS	Os	Mean
Outcomes												Score of
Cos												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5
CO1	3	2.5	4.1	3.5	3	2.5	3	3.1	4	3.2	3.2	3.19
CO2	3.3	3.2	3	3	3.5	2.8	4	3.6	3	2.3	3.5	3.2
CO3	3.5	4.2	3.5	2.8	3	3.2	3.5	3.5	3.7	4	3.2	3.46
CO4	3.2	3.8	3	4.2	3	3.5	3.5	2.8	3.6	3.5	3.6	3.42
CO5	4.3	3.5	3.7	3.2	3.8	2.5	3.5	3.2	4.3	3.2	3.5	3.51
				Me	an Ove	erall Sco	ore					3.36
			R	esult:	The So	core for	this cou	ırse isH	igh			
Mapping		1-2	0%		21-40%	6	41-60%		61-80	%	81	-100%
Scale		1	1		2		3		4			5
Relation	n 0.0-1.0 1.1-2.				1.1-2.0)	2.1-3.0			.0	4	.1-5.0
Quality	Very Poor Poor					Moderate High V					Ve	ry High
	I			<u> </u>	١	alue S	caling	I			1	
Mean Se	core of	COs=	To Total N	tal Valu o.of POs			Mean (Overall S	Score of	COS = -	otal Mea °otal No.	

UNIT – I : SEMICONDUCTOR DEVICES

Bonding, Band gap of semiconductors –Types of semiconductors-Elemental and Compound semiconductors-intrinsic and extrinsic semiconductors – effect of temperature on Fermi level – PN junction diode – Zener diode-LED - photo diode – Solar cell-different modes of operation – transistor biasing –characteristics in CB & CE modes –H-Parameters- and of a transistor.

UNIT –II : RECTIFIERS AND AMPLIFIERS

Half-wave , full-wave and bridge rectifier – expression for efficiency and ripple factor – choke input filter – capacitor input filter – section filter – zener regulated power supply .

RC coupled amplifier – frequency response curve – analysis of mid-frequency region – classification of amplifiers – class A power amplifier – Push-pull, class B power amplifier – Emitter follower.

UNIT -III : OSCILLATORS

Voltage gain of a feedback amplifier – Barkhausen criterion – Hartley, Colpitt's, phase shift and Weinbridge oscillators – expression for frequency of oscillations and condition for sustained oscillations in each case – crystal oscillator – frequency stability.

UNIT –IV : WAVE SHAPING CIRCUITS AND MULTI VIBRATORS (15 hours)

Clipping and clamping circuit – biased clipper – integrating and differentiating circuits – RC time constants. Multivibrators – Astable – Mono stable and bi-stable multivibrators – Schmitt trigger

UNIT -V: APPLICATION OF ELECTRONICS

Passive devices – resistors – Capacitors – Colour coding – TV antennas – dipole – folded – Yagi – Dish – DTH – Mobile communication system.

TEXT BOOKS

- 1. B.L. Theraja, *Electronics*, S. Chand Publishing, 2005.
- 2. V. K Mehta, Principles of electronics, S. Chand & Co., 2005.
- 3. M.K. Bagde and S. P. Singh, *Elements of Electronics*, S. Chand Publishing, 2000.
- 4. K.V. Ramanan, Functional electronics, McGraw-Hill Inc., US, 1984.
- 5. M. Arul Thalapathi, Basic and Applied Electronics, Comtek publisher, 2005.

REFERENCE BOOKS

- 1. A. Malvino, *Electronics Principles*, McGraw Hill Education, 7th Edition, 2006.
- 2. Allen Mottershed, *Electronic Devices and Circuits*, Goodyear Pub. Co., 1973.
- 3. Manna, Solid state electronics, Tata McGraw Hill
- 4. B. Grob, *Basic electronics*, McGraw Hill Education, 12th Edition.
- 5. R.S. Sedha, *Applied Electronics*, S. Chand & Company Ltd; 2nd New Edition, 2000.

(15 hours)

(15 hours)

(15 hours)

(15 hours)

YEAR- III SEM- V	C	ourse Code: H509T	,		TAL E		itle: RONICS CESSOI		I	HRS/WI 4	K	CREDIT 4				
CO1	Unde	rstand	the dig	ital fu	ndamer	ntals										
CO2	Study	on bo	olean a	lgebra	and si	mplifica	tion									
CO3	Unde	rstand	the ari	thmetic	e circui	ts										
CO4	Study	tudy about the D/A and A/D converters														
CO5	Study	on int	roduct	ion to 1	microp	rocessoi	8085									
	N	Iappin	g of co	ourse o	outcom	es with	the prog	gram sp	ecific o	utcomes	5					
Course	Prog	Programme Outcomes POsProgramme Specific Outcomes PSOs														
Outcomes												Score of				
Cos												CO's				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5				
CO1	3.2	3.8	4.1	3.5	3	2.8	3.5	3.1	4	3	3.2	3.38				
CO2	3.5	3.2	3.2	3	3.5	3.6	4	3.6	3	2.6	3.8	3.36				
CO3	3.5	4.1	3.2	2.6	3	3.2	3	3.5	3.5	3.5	3	3.28				
CO4	3.2	3.8	3	4	3	4	3.5	2.8	3.5	3	3.6	3.4				
CO5	4	3.5	3.5	3.2	3.5	2.5	3.5	3	4	3	3.5	3.38				
				Me	an Ove	erall Sco	ore					3.36				
			R	esult:	The So	core for	this cou	ırse isH	igh							
Mapping		1-2	0%		21-40%	ó	41-60%		61-80	%	81	-100%				
Scale		1	l		2		3		4			5				
Relation	n 0.0-1.0 1.1-2)	0 2.1-3.0			3.1-4.0						
Quality		Very	Poor		Poor]	Moderate	e	Higł	1	Ve	ry High				
	<u> </u>			I	١	/alue Sc	aling	I			1					
Mean So	core of	COs=				$Mean Score of COs = \frac{Total Values}{Total No.of POs \& PSOs} Mean Overall Score of COs = \frac{Total Mean Scores}{Total No.of COs}$										

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1

UNIT-I DIGITAL FUNDAMENTALS

Number systems - decimal, binary, octal and hexadecimal systems - conversion from one number system to another Codes - BCD code - excess 3 code, Gray code -ASCII code - Binary arithmetic - Binary addition - subtraction - unsigned binary numbers – sign magnitude numbers – I's and 2's complement – Binary multiplication and division.

LOGIC GATES AND LOGIC FAMILIES

AND, OR circuits using diodes and transistors - NOT using transistors - NAND, NOR and EXOR – functions and truth tables. NAND & NOR as universal gates.

UNIT – II **BOOLEAN ALGEBRA AND SIMPLIFICATION OF LOGIC CIRCUITS** (15 hours)

Laws and theorems of Boolean algebra - De Morgan's theorems and their circuit implications – Duality theorem, simplification of Boolean equations – Karnaugh map - pairs, quads, octets - 2,3 and 4 variables -SOP method - NAND - NAND circuits -POS method – NOR – NOR circuits.

UNIT - III ARITHMETIC CIRCUITS AND SEQUENTIAL LOGIC **CIRCUITS** (15 hours)

Arithmetic building blocks - Half adder - Full adder - parallel binary adder - Half subtractor - Full subtractor - The adder- subtractor - digital comparator - parity checker/generator. Flip-flops -JK flip - flop - JK master slave flip-flop -Flip flop applications. Shift register functions- Shift right-shift left-Shift register applications.

UNIT - IV: D/A AND A/D CONVERTERS

Introduction - variable resistor network - binary ladder - D/A converter - D/A accuracy and resolution – A/D converter – simultaneous conversion – A/D accuracy and resolution.

UNIT – V: INTRODUCTION TO MICROPROCESSOR 8085 (15 hours)

Basics of semiconductor memory- RAM, ROM, PROM and EPROM. Microcomputer organization-8085 Microprocessor-pin functions-architecture-machine and assembly language-programmer's model of 8085-8085 addressing modes. Classification of instruction and format – 8-bit data transfer and arithmetic instructions.

(15 hours)

(15 hours)

(15 hours)

TEXT BOOKS

- 1. Arul Thalapapathi, *Fundamentals of Digital Computers*, Comptek Publishers, Chennai, 1995.
- 2. Vijayendran, *Fundamentals of Microprocessor* 8085, S. Viswanathan Pvt.Ltd, 2006.
- 3. Vijayendiran, *Integrated Electronics*, Viswanathan, S., Printers & Publishers Pvt. Ltd., 2009.
- 4. Nagoor Kani, Microprocessor, RBA Publications, 2016.
- 5. B. Ram, Introduction to Microprocessor and Microcontroller, Dhanpat Rai Publications, 2012.

REFERENCE BOOKS

- 1. Malvino and Leech, *Digital Principles and Application*, 4th Edition, Tata Mcgraw Hill, New Delhi, 2000.
- 2. Millman and Halkias, *Integrated Electronics*, International Edition, McGraw Hill, New Delhi, 1972.
- 3. T. C. Bartee, Computer Architecture and Logic Design, McGraw Hill, 1991.
- 4. J.P. Agarwal and Anit Agarwal, *Solid State Electronics*, Pragati Prakashan, 2nd Edition, 2014.
- 5. Herbert Taub and Donald Schilling, *Digital Integrated Electronics*, McGraw Hill, 1st Edition, 2008.
- Anokh Singh and A. K. Chhabra, *Fundamentals of Digital Electronics and Microprocessors*, 2nd Revised and Enlarged Ed., 2. Chand & Co. Ltd., New Delhi, 2005.
- 7. Floyd, *Digital Fundamentals*, Pearson Education, 8th Edition, S. Chand Publications, 2004.

YEAR- III SEM- V	C	ourse Code: PH510		Course Title: MATERIALS SCIENCE						IRS/WI 5	K	CREDIT 3	
CO1	Unde	rstand	the cla	ssificat	ion of	material	S		H				
CO2	Unde	rstand	the var	ious pl	nase dia	agram							
CO3	Get k	nowled	lge the	phase	transfo	ormation	in solic	d materia	als				
CO4	Unde	rstand	the ele	ctron tl	neory c	of metals	5						
CO5	Unde	rstand	the ele	ctrical	and ma	agnetic p	oropertie	s of ma	aterials				
	N	Iappin	g of co	ourse o	utcom	es with	the prog	gram sp	ecific ou	utcomes			
Course	Prog	gramn	e Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean	
Outcomes												Score of	
Cos												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5	
CO1	3.5	2.5	4.1	3.5	3.5	2.5	3	3.5	4.2	3.2	3.2	3.33	
CO2	3.6	3.2	3.6	3	3.5	2.8	4.1	3.6	3.7	2.3	3.5	3.35	
CO3	3.5	4.3	3.5	2.8	3	3.6	3.5	3.5	3.7	4.2	3.3	3.53	
CO4	3.2	3.6	3	4	3	3.5	3.4	2.8	3.4	3.5	3.6	3.36	
CO5	4	3.5	3.5	3.2	3.6	2.5	3.5	3.2	4	3.2	3.5	3.42	
				Me	an Ove	erall Sco	re				<u></u>	3.40	
			R	esult: '	The Sc	ore for	this cou	rse isH	igh				
Mapping		1-2	0%	,	21-40%	, D	41-60%		61-80	%	81	-100%	
Scale		1	1		2		3		4			5	
Relation	0.0-1.0 1.1-2.0)	2.1-3.0		3.1-4.0			4.1-5.0	
Quality	Very Poor Poor					N	Moderate	e	High	1	Ve	ry High	
				I	V	alue Sc	aling	I			<u> </u>		
Mean So	core of	COs=		tal Valu o.of POs			Mean C	Overall S	core of	COs = -	otal Mea 'otal No	nScores of COs	

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1

UNIT I: CLASSIFICATION OF MATERIALS

Material Science: - Engineering requirements of materials- Material structure- Types of Bonds and their energies – Bond formation mechanism- Ionic bond-covalent bond examples-ceramics- thermal and electrical properties – uses-Metallic bond-comparison of bond (dispersion bonds, dipole bonds and hydrogen bonds)-Crystal imperfection – Types of imperfections- Thermal vibrations – point, line and surface imperfections- Frank – Read source.

UNIT II: PHASE DIAGRAM

Basic terms- solid solutions- Hume – Rothery's rules- intermediate phase- Gibb's Phase rules- Time – temperatures cooling curves- construction of phase diagrams- the Lever rule- eutectic systems- eutecoid Systems- peritectic and peritectoid system-Ternary equilibrium diagrams.

UNIT-III: PHASE TRANSFORMATION

Rate of transformation- nucleation (homogeneous and heterogeneous)-nucleation and growth –applications of phase transformations –micro constituent of iron – carbon system –the allotropy of iron – Iron-Carbon equilibrium diagram- formation of Austenite- TTT diagram- transformation Austenite upon continuous cooling.

UNIT-IV: ELECTRON THEORY OF METALS

Fundamental theories of electrons (Drude and Lorentz theory and Sommerfield free electron theory) –electron energies in a metal- Zone theory of solids- energy gaps – density of states – Zones in conductors, insulators and semiconductors- factors affecting electrical resistance of materials.

UNIT V: ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS (15 hours)

Resistivity- conductivity- semiconductors –classification of semiconductors on the basis of Fermi energy and Fermi levels- insulators –dielectrics –ferro electricity – electro strict ion- Piezo electricity –uses of dielectrics –capacitors dielectric strength-magnetic properties of materials –magneto strict ion-magnetic domain –soft and hard magnetic magnetic materials

TEXT BOOKS

- 1. Raghavan. V, *Materials science and Engineering a first course*, 3rd Ed., Presences Hall of India (pact) Ltd, 1990.
- 2. Arumugam, Materials Science, Anuradha Publications, 2015.

REFERENCE BOOKS

- 1. Kittel C., Introduction to Solid State Physics, 8th Ed., Wiley Eastern, 2012.
- 2. Manchandra V.K., *A text book of Materials Science*, New India Publishing House, 1992.

(15 hours)

(15 hours)

(15 hours)

YEAR- III
SEMESTER V
PRACTICAL -5

(Any Twelve of the Following)

- 1. Youngs modulus Koenig's method non uniform bending
- 2. Newtons rings R1, R2 and μ of a convex lens
- 3. Spectrometer i i' curve
- 4. Spectrometer narrow angled prism μ of the prism.
- 5. Spectrometer Cauchy's constant
- 6. Construction of voltage regulator (2 Diodes)-Zener Diode
- 7. RC coupled single stage amplifier
- 8. Construction of a low range power pack- Two diodes
- 9. EMF of a thermocouple mirror galvanometer (or) table galvanometer
- 10. Potentiometer emf of a thermocouple.
- 11. BG comparison of EMFs
- 12. Potentiometer Conversion of galvanometer into voltmeter
- 13. BG Absolute Capacitance
- 14. BG comparison of capacitances BG absolute capacitance of a capacitor
- 15. BG comparison of Mutual Inductance.
- 16. Transistor characteristics CE mode.

YEAR- III SEM- VI	Code: RELATI PH610S ME(MATHEM					HANIC	QUANT CS AND)		IRS/W 5	K	CREDIT 4	
CO1	Unde	Inderstand the theory of relativity											
CO2	Unde	nderstand the concept of wave mechanics.											
CO3	Solvi	ng Sch	röding	er wav	e equat	tion and	applicat	ions.					
CO4	Unde	rstand	the var	ious n	athema	atical ph	ysics						
CO5	Unde	Understand the various special functions.											
	Ν	Iappin	g of co	ourse o	outcom	es with	the prog	gram sp	ecific o	utcomes	5		
Course	Prog	gramn	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean	
Outcomes												Score of	
Cos												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5	
CO1	4	3.8	4	3.5	3.5	3.8	3.5	3	4	3	4	3.65	
CO2	3.5	3	3.5	3	3.5	4	4	4	4	3	4	3.59	
CO3	3	3.5	3	4	3.5	3	3	3.5	4	3.5	3	3.36	
CO4	3	4	4	3	2	3.5	3.5	3.5	3.5	4	2.5	3.32	
CO5	4	4	4	3.5	4	4	3.5	4	4	3.5	2.5	3.73	
				Me	an Ove	erall Sco	ore					3.53	
			R	esult:	The So	core for	this cou	ırse isH	igh				
Mapping		1-2	0%		21-40%	ó	41-60%		61-80	%	81	-100%	
Scale	1 2						3		4			5	
Relation	0.0-1.0 1.1-2.0)	2.1-3.0		3.1-4.0			.1-5.0	
Quality	Very Poor Poor						Moderate	e	Higł	1	Ve	ry High	
					١	/alue Sc	aling				1		
Mean So	core of	COs=	To Total N	Score of	COS = -	otal Mea Fotal No	nScores of COs						

UNIT - I : RELATIVITY

Frames of references – Michelson – Morley experiment – significance of negative result – postulates of special theory of relativity – Lorentz transformation equations – Length contraction - Time dilation - Relativity of simultaneity - Law of addition of velocities - variation of mass with velocity - relativistic kinetic energy equations postulates of general theory of relativity – gravitational red shift.

UNIT - II WAVE MECHANICS

Matter Waves - de Brogile wavelength - wave velocity and group velocity -Heisenberg's Uncertainty principle - proof of Uncertainty principle for one dimensional wave packet - postulates of wave mechanics - properties of wave function - operator formalism (Basics only)- eigen functions - eigen values expectation values.

UNIT - III : SCHR DINGER EQUATIONS AND ITS APPLICATIONS

(15 hours)

(15 hours)

(15 hours)

Schr dinger equation – time dependent and time independent – application of Schr dinger equations – linear harmonic oscillator – zero point energy – particle in a one dimensional box - barrier penetration and tunneling effect rigid rotator hydrogen atom.

UNIT - IV : MATHEMATICAL PHYSICS

Gauss divergence theorem - stokes theorem - Greens theorem - applications of vectors to hydrodynamics.

Spherical polar coordinates – expressions for gradient, div in Cartesian & spherical coordinates.

UNIT - V : SPECIAL FUNCTIONS

Beta and gamma functions- relation between them - harmonics-Bessel's differential equations - Legendre's differential equations - Hermite's differential equations -Laguerre's differential equations – series solutions.

TEXT BOOKS

- 1. V. Devanathan, Quantum Mechanics, Narosa, Chennai, 2005.
- 2. R. Murugeshan, Kiruthigs, Sivaprasath, Modern Physics, S Chand & Co., 2007.
- 3. V. K. Thangappan, Quantum Mechanics, Wiley Eastern, 1985.
- 4. P. M. Mathews and Venkatesan, A Text Book of Quantum Mechanics, McGraw Hill, 1978.
- 5. Sathya Prakash, Mathematical Physics, Sultan Chand & Sons, 6th Revised Edition Reprint 2014.
- 6. R. Murugeshan, Mechanics and Mathematical Methods, S Chand Publishing & Co., 2015.

REFERENCE BOOKS

1. B. D. Gupta, Mathematical Physics, Vikas Publishing House; Fourth Edition, 2009.

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1

41

(15 hours)

- 2. Ghatak and Loganathan, Quantum Mechanics, McMillan, 2004.
- 3. A. Ghatak, Basic Quantum Mechanics, McMillan India, 2002.
- 4. Murray Spiegal, *Introduction to Boundary Value Problems* (Scahaum's Series), McGraw-Hill Education; 1st Edition, 1974.

YEAR- III SEM- VI	C	ourse Code: H611		Course Title:HRS/WKNUCLEAR AND RADIATION5PHYSICS5							K	CREDIT 4
CO1	Study	the va	rious r	uclear	structu	ire predi	ction.					
CO2	Occu	r know	ledge o	on radi	oactive	decay						
CO3	Unde	r the va	arious	particle	e oscilla	ators and	d detecto	ors				
CO4	Unde	rstand	the rea	ctors a	nd radi	ation ph	ysics					
CO5	Occu	r know	ledge o	on elen	nentary	particle	s					
	N	Iappin	g of co	ourse o	utcom	es with	the prog	gram sp	ecific o	utcomes	;	
Course	Prog	gramn	e Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean
Outcomes												Score of
Cos												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5
CO1	4	4	3.5	4	3.8	3.5	3	3.5	3.5	3.5	3	3.57
CO2	2.5	4	3	4	4	3.5	3.5	3.5	4	4	3.5	3.59
CO3	3.5	3.5	4	3.5	3.5	3.5	4	4	3.5	3	3.5	3.59
CO4	3	4.5	3.5	4	3.5	4	3	3	3.5	4	3.5	3.59
CO5	3	4	2.5	4	4	4	3.5	3.5	4	3.5	4	3.64
	I			Me	an Ove	rall Sco	re	I				3.60
			R	esult: '	The So	ore for	this cou	rse isHi	igh			
Mapping		1-2	0%	<i>.</i>	21-40%	ó	41-60%		61-80	%	81	-100%
Scale]	l		2		3		4			5
Relation	0.0-1.0 1.1-2.0)	2.1-3.0		3.1-4.0			.1-5.0
Quality		Very	Poor		Poor Moderate High Ver						ry High	
	I			1	١	/alue Sc	aling	J			1	
Mean So	core of	COs=	To Total N	tal Valu 5.0f POs			Mean C	Overall S	core of	COs = -	otal Mea "otal No	

UNIT - 1 : NUCLEAR STRUCTURE

Nuclear spin – determination of magnetic dipole moment, electric quadruple moment, parity of nuclei, isospin, theories of nuclear composition, proton and electron hypothesis, proton – neutron hypothesis, nuclear forces – meson theory of nuclear forces.

Liquid drop model – Bethe Weizacker's mass formula – application to alpha decay – Bohr – Wheeler theory – shell model – evidences – theory – energy level diagram – spin orbit interaction – magic numbers – nuclear stability.

UNIT - II : RADIOACTIVE DECAY

Radioactive disintegration - law of successive disintegration - transport and secular equilibrium - radioactive series - Geiger - Nuttal law - Age of earth - alpha particle disintegration energy – alpha particle spectra – theory of alpha decay (Qualitative treatment).

Beta ray spectra – origin – neutrino theory of beta decay – electron capture – gamma rays – determination of wavelength by Diamond – crystal spectrometer – nuclear isomerism.

UNIT - III : PARTICLE ACCELERATORS AND DETECTORS (15 hours)

Cyclotron – synchrocyclotron – Betatron – electron synchrotron – proton synchrotron (Bevatron)-GM counter – ionization chamber – bubble chamber – scintillation counter - photographic emulsion techniques.

UNIT - IV : REACTORS AND RADIATION PHYSICS (15 hours)

Nuclear fission – Chain reaction – four-factor formula – reactor theory – critical size of a reactor – general aspect of reactor design – reactor shielding – reactor control - classification of reactors - pressurized heavy water reactor - fast breeder reactor-Introduction to recent rectors.

Radiation hazards - biological effects of radiation - radiation sickness - radiation units and operational limits radiation survey meters - pocket dosimeter -control of radiation hazards - radiation therapy - radioisotopes used for therapy - nuclear medicine - industrial applications - food preservatives.

UNIT - V : ELEMENTARY PARTICLES

Classification – types of interaction – symmetry and conservation laws – hadrons – leptons - baryons - mesons - strangeness - hyperons - antiparticles - antimatter - basic ideas about quarks - types of quarks.

TEXT BOOKS

- 1. Brijlal and N.Subramaniam-Modern Physics
- 2. D.C. Tayal, Nuclear Physics, Himalaya Publishing House, 2011.
- 3. R. Murugeshan, *Modern Physics*, S. Chand & Co., 2009.
- 4. R. Murugeshan & Kiruthiga, Sivaprasath, *Modern Physics*, S. Chand & Co., 2009.

St. Joseph's College of Arts & Science (Autonomous), Cuddalore-1

(15 hours)

(15 hours)

5. Thayalan, *Basic Radiological Physics*, Jaypee Brothers Medical Publishers Pvt. Ltd, 1st Edition, 2009.

REFERENCE BOOKS

- 1. S. N. Ghoshal, *Nuclear Physics*, S Chand & Co. Edition, 2003.
- 2. M. L. Pandya, R.P.S. Yadav, *Elements of Nuclear Physics*, Kedar Nath & Ram Nath Publishers, 2000.
- 3. Irving Kaplan, Nuclear Physics, Narosa, 2002.
- 4. Nuclear Physics J B Rajam, S chand Publishing Co.
- 5. Littlefield & Thorley, Atomic and Nuclear Physics, Springer, 3rd Ed. 1979.

YEAR- III SEM- VI	C	ourse Code: H612S			ER A		itle: BER OI CATIOI		I	IRS/WI 5	K	CREDIT 4	
CO1	Unde	rstand	the know	owledg	e on la	ser phy	sics						
CO2	Unde	rstand	the dif	ferent 1	ypes o	of lasers	and ou	tput m	odulatic	n meth	ods		
CO3	Study	the va	rious a	pplica	ations of	of laser							
CO4	study	the va	rious t	ypes of	optica	al fibers	•						
CO5	Occu	r know	ledge o	on fibe	r optic	comm	unicatio	n					
	N	Iappin	g of co	ourse o	utcom	es with	the prog	gram sp	ecific ou	utcomes	6		
Course	Pro	gramn	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean	
Outcomes												Score of	
Cos												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5	
CO1	4	4	3.5	4	3.5	4	4	3.5	3.5	4	3.5	3.77	
CO2	3.5	3.5	3.5	4	4	3.5	4	3.5	4	4	4	3.77	
CO3	4	4	4	3.5	4	3.5	3.5	3.5	3.5	4	4	3.77	
CO4	4	3.5	3.5	3.5	3.5	3	2.5	4	4	3.5	4	3.55	
CO5	3.5	4	3.5	4	3.5	3.5	4	4	3.5	3.5	3.5	3.68	
	1	1		Me	an Ove	erall Sco	re					3.71	
			R	esult:	The So	core for	this cou	ırse isHi	igh				
Mapping		1-2	0%	,	21-40%	ó	41-60%		61-80	%	81	-100%	
Scale	1 2						3		4			5	
Relation	0.0-1.0 1.1-2.0) 2.1-3.0			3.1-4.0			4.1-5.0	
Quality		Very	Poor		Poor	N	Moderate	e	High	1	Ve	ry High	
	I				V	/alue Sc	aling	I			1		
Mean So	core of	COs=		tal Valu o.of POs			Mean C	Overall S	core of	()s = -	otal Mea °otal No.		

UNIT - I : LASER PHYSICS

Basic Principle of Laser – Einstein Coefficients – condition for light amplification – Population Inversion – Threshold Condition – Line shape function – Optical Resonators – Three level and four level systems.

UNIT - II : TYPES OF LASERS AND OUTPUT MODULATION METHODS (15 hours)

Solid State lasers – Gas lasers – He-Ne and CO_2 lasers – semiconductor lasers – Heterojunction lasers - Argon ion and Eximer Laser– Q switching and mode locking.

UNIT - III : APPLICATIONS OF LASER

Application of laser in industry – cutting and welding – Drilling – surface Hardening – Medical applications - laser as diagnostic and therapeutic tool – Holography – Theory of recording and reconstruction – application of Holography.

UNIT - IV : OPTIC FIBERS

Fiber optic revolution – basic characteristics of optical fiber – acceptance angle – numerical aperture – propagation of light through optical fiber – theory of mode formation – classification of fibers – step index and graded index fibers – single mode and multi mode fibers – losses in fibers – fabrication techniques of fibers.

UNIT - V : FIBER OPTIC COMMUNICATION

Source and detectors for fiber optic communication – Laser and LED – Analog and digital modulation methods – principle of optical detection – pin and APD photo detectors – Noise – Design consideration of a fiber optic communication system.

TEXT BOOKS

- 1. Ashokamani-Laser
- 2. R. Murugeshan, *Modern Physics*, S. Chand & Co., 2009.
- 3. Senthil Kumar, Engineering Physics, VRB Publishers Pvt. Ltd., 2013.
- 4. K. Thyagarajan and Ajoy Ghatak, *Laser Theory and Applications*, Cambridge University Press, 1999.

REFERENCE BOOKS

- 1. John M. Senior, *Optical Fiber Communications*, Cambridge University Press, 1996.
- 2. Govind P. Agrawal, *Fiber Optic Communication Systems*, John-Willey & Sons, 2007.
- 3. P. K. Palanisamy, *Physics for Engineering*, Scitech publishing Pvt. Ltd., Chennai, 2009.

47

(15 hours)

(15 hours)

(15 hours)

YEAR- III SEM- VI	C	ourse Code: H613		API		ourse T DELEC	itle: CTRON	ICS	I	IRS/WI 5	K	CREDIT 4	
CO1	under	stand t	he kno	wledge	e of spo	ecial de	vices ar	nd appli	cations				
CO2	obtair	n the k	nowled	lge on a	linear	operatio	onal am	plifier c	ircuits				
CO3	Unde	erstand	the ap	oplicat	tions o	f operat	tional ar	nplifier					
CO4	Unde	rstand	the wo	rking o	of 555	timer aı	nd PLL						
CO5	Get k	nowle	dge of	f D /A	and A	A /D coi	nverter						
	N	Iappin	g of co	ourse o	utcom	es with	the prog	gram sp	ecific ou	utcomes	6		
Course	Prog	gramn	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean	
Outcomes												Score of	
Cos												CO's	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	j	
CO1	4.5	4.8	4	4.5	4	4	4.2	3.5	4	4.5	4	4.18	
CO2	3	3.5	4	4.5	4	4	4	4	3.5	4	2.5	3.73	
CO3	4	4	4.5	3.5	4	3.5	3	3	3.5	4	3.5	3.68	
CO4	3.5	3	3	3.5	4	4.5	4	4	3.5	3	3.5	3.59	
CO5	4	3	3	3.5	3	3	3.5	3.2	3	3	3	3.15	
	1	I	I	Me	an Ove	erall Sco	re		I	I		3.68	
			R	esult:	The So	ore for	this cou	rse isH	igh		I		
Mapping		1-2	0%		21-40%	ó	41-60%		61-80	%	81	-100%	
Scale]	l		2		3		4			5	
Relation	0.0-1.0 1.1-2.0)) 2.1-3.0		3.1-4.0			4.1-5.0	
Quality		Very	Poor		Poor Moderate High Ve						Ve	ry High	
					V	/alue Sc	aling	[1		
Mean Se	core of	COs=		tal Valu o.of POs			Mean C	Overall S	core of	COS = -	otal Mea °otal No.		

1. Albert Paul Malvino, *Digital Computer Electronics*, TMH Edition, 1992.

- 2. I. J. Jagrath, *Electronics Analog and Digital*, Prentice Hall of India, New Delhi, 1999.
- 3. Malvino Leach, *Digital Principles and Applications*, 4th Edn., Tata McGraw Hill, 1992.
- 4. Jacob Millman and Christos C. Halkias, *Integrated Electronics*, McGraw Hill International, 1971.
- 5. D. Roy Choudhury and Shall Jain, *Linear Integrated Circuits*, New age International (p) Ltd., 2010.

UNIT - I : SPECIAL DEVICES AND APPLICATIONS (15 hours)

FET _ Characteristics – parameter FET as amplifier – FET as VVR – MOSFET – Depletion and enhancement – UJT characteristics – UJT as relaxation oscillator – SCR characteristics.

UNIT - II : LINEAR OPERATIONAL AMPLIFIER CIRCUITS (15 hours)

OPAMP – Parameters – inverting and Non-inverting amplifier – gain – Miller effect – Virtual ground – offset voltage – offset current – PSRR - CMRR. OPAMP – Sign and scale changer – adder, subtractor and averager – integrator and differentiator – voltage follower – solving simultaneous linear equation.

UNIT – III : APPLICATIONS OF OPERATIONAL AMPLIFIER (15 hours)

OP AMP logarithmic amplifer – antilogarthmic amplifer – Logarithmic multiplier – Logarithmic divider.Comparator – Schmitt trigger – Astable multivibrator – Monostable multivibrator – Bistable multivibrator – Wein Bridge oscillator – phase shift oscillator.

UNIT - IV : 555 TIMER AND PLL

555 Timer block diagram - Monostable operation – Astable operation – Schmitt trigger.Phase – Locked Loops (PLL): Basic principles – phase Detector- Analog phase detector – Digital phase detector – voltage controlled oscillator (VCO).

UNIT - V : D / A AND A / D CONVERTER

Weighted resistor D/A converter – 4bit R-2R ladder DAC – Analog to Digital converter – Stair case ADC– Successive approximation ADC.

TEXT BOOKS

REFERENCE BOOKS

- 1. Vijayendran, Integrated Physics, S.Viswanathan Pvt. Ltd., 2009.
- 2. R.S. Sedha, *Applied Electronics*, S. Chand & Company Ltd., 2nd New Edition, 2000.
- 3. M. Arul Thalapathi, *Basic and Applied Electronics*, Cometak Publisher Chennai, 2005.

49

(15 hours)

6. Ramakant A. Gayakwad, *OP–AMPS and Linear Integrated Circuits*, Prentice Hall of India, 1994.

YEAR- III SEM- VI	C	ourse Code: H614S		Course Title:HRS/WKNUMERICAL METHODS AND4COMPUTER PROGRAMMING4							K	CREDIT 3
CO1	Get d	Get detailed knowledge on solution of equation										
CO2	Study	the va	rious i	nterpol	lation							
CO3	Expla	in the	various	s nume	erical i	ntegrati	on and	differer	ntiation			
CO4	Expla	ain the	differe	nt data	type o	operator	rs					
CO5	Study	y the v	arious	contro	ol state	ements						
	N	Iappin	g of co	ourse o	utcom	es with	the prog	gram sp	ecific o	utcomes		
Course	Prog	gramn	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean
Outcomes												Score of
Cos												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	5
CO1	3	3.5	3	3.2	3.5	4	3	3	3.5	3.5	4	3.38
CO2	4	4	3.5	4	4	4	2.5	3.5	4	3.5	4	3.73
CO3	4	3.5	4	3.5	3	3.5	4	4	4	3	3.5	3.64
CO4	3.5	3.5	4	3.5	3.5	3.5	4	3.5	3.5	3.5	3.5	3.59
CO5	4	4	3.5	3.5	4	4	3.5	4	4	3.5	3	3.73
			L	Me	an Ove	erall Sco	re	I	I	I		3.61
			R	esult:	The So	core for	this cou	ırse isHi	igh		U	
Mapping		1-2	0%		21-40%	ó	41-60%		61-80	%	81	-100%
Scale		1	l		2		3		4			5
Relation		0.0-	-1.0		1.1-2.0)	2.1-3.0		3.1-4	.0	4	.1-5.0
Quality	ty Very Poor Poor Moderate High							Very High				
	I			I		/alue Sc	aling	I			1	
Mean Se	core of	COs=	To Total N	tal Valu o.of POs	es & PSOs		Mean C	Overall S	core of	('()) = -	otal Mea 'otal No.	

UNIT 1: SOLUTION OF EQUATION

Eigen values, Eigen vectors, Cayley Hamilton ; characteristic equation of a matrix -Solution of simultaneous equations - Gauss elimination method - Gauss-Jordan method.

UNIT 2: INTERPOLATION

Linear and Lagrange interpolation – Newton's forward & backward interpolation polynomial equation & determination of roots – Newton-Raphson method.

UNIT 3: NUMERICAL INTEGRATION AND DIFFERENTIATION (15 hours)

Trapezoidal rule – Simpson rule 1/3 & 3/8 – Solution of first & second order differential equation: Taylor series - Euler's method (Improved & Modified) -Solutions of forth order Runge-Kutta method.

UNIT 4: DATA TYPE OPERATORS

History & Features of C Language - Variable name – data type and sizes – declaration - arithmetic, relational and logical operators - perecedence and order of evaluation.

UNIT 5: CONTROL STATEMENTS

Unconditional control statements – GOTO and labels – Conditional control statements - simple IF, IF..ELSE, nested IF..ELSE, ELSE IF ladder - switch case - break continue statement. Looping statement - while - do..while - for - nested for loop -(Basic Programs - Qualitative studies only)

TEXT BOOKS

- 1. S.S. Sastry, *Numerical Methods*, Prentice Hall India Learning Private Limited; Fifth edition 2012.
- 2. Venkataraman, *Numerical Methods*, The National Publishing Company, Madras, 1999.
- 3. Thilagavathi, Numerical Methods, Published by S. Chand & Company Ltd., 2013.
- 4. Kandasamy, *Numerical Methods*, S Chand & Company; Reprint 6th Edition, 2006.
- 5. E. Balagurusamy, ANSI-C, McGraw Hill Education India Private Limited; Seventh Edition, 2016.

REFERENCE BOOKS

- 1. Satya Prakash, Mathematical Physics, 4th Ed., Sultan Chand & Sons Publication, New Delhi, 2014.
- 2. A. Singaravelu, Numerical methods, 1st Ed., Meenakshi Publication, Tamil Nadu, 2008.
- 3. Yeshwant kanitkar, Let us 'C', BPB Publications; Thirteenth Revised and Updated Edition, 2016.
- 4. Kuo-Addison, Numerical Methods and Computers, Wesely London, 1966.
- 5. Rajaraman, Computer Oriented Numerical Methods, 3rd Ed., Prentice Hall India Learning Private Limited, 1993.

52

(15 hours)

(15 hours)

(15 hours)

YEAR- III SEM- VI	C	ourse Code: PH613				ourse T GY PH	itle: HYSICS	5	F	IRS/WI 5	X	CREDIT 3
CO1	Study	v about	the Co	nventi	onal Ei	nergy So	ources					
CO2	Learn	about	the No	on-Con	ventior	nal Ener	gy Sourc	ces				
CO3	Acqu	ire Kno	owledg	e of Bi	iomass	energy						
CO4	Be fa	miliar	with th	e Geot	hermal	energy						
CO5	Appl	y the ki	nowled	ge of I	Energy	storage	and imp	acts of I	Non-con	ventiona	al energ	gy
	N	Iappin	g of co	ourse o	utcom	es with	the prog	gram sp	ecific ou	itcomes		
Course	Prog	gramm	ne Out	comes	POs	Prog	gramme	Specifi	c Outco	mes PS	Os	Mean
Outcomes												Score of
Cos												CO's
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO	5
CO1	4	3.5	3.5	3.5	4	3.5	4	4	3	3	3	3.55
CO2	4	3.5	2.5	4	3.5	4	3.5	3.5	3	3	4	3.50
CO3	3.5	4	3.5	4	4	4	4.5	3.5	3.5	3.5	3.5	3.77
CO4	3.5	3.5	4	3.5	4	3.5	4	4	3	3.5	3.5	3.64
CO5	4	4	4	4	3.5	3	4	3.5	3	3.5	3.5	3.64
				Me	an Ove	erall Sco	re					3.62
			R	esult: '	The Sc	ore for	this cou	rse isH	igh			
Mapping		1-2	0%	,	21-40%	, D	41-60%		61-80	%	81	-100%
Scale		1	l		2		3		4			5
Relation	0.0-1.0 1.1-2.0)	2.1-3.0		3.1-4.0			.1-5.0
Quality		Very	Poor		Poor	ľ	Moderate High Very Hig					ry High
				1	V	alue Sc	aling				<u> </u>	
Mean So	core of	COs=		tal Valu o.of POs			Mean C	Overall S	core of	COs = -	otal Mea 'otal No	nScores of COs

UNIT I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability-various forms of energy- renewable and conventional energy systems- comparison and natural gas - availability -statistical details-applicationsmerits and demerits

UNIT II

(15 hours) Non-Conventional Energy Sources: Renewable energy sources- solar energy- nature of solar radiation- components-solar heaters- crop dryers- space cooling-solar pondssolar cookers-water desalination- photovoltaic generation basics- merits and demerits of solar energy

UNIT III

Biomass energy-classification- photosynthesis- biomass conversion process- gobar gas plants- wood gasification- ethanol from wood- advantages and disadvantages of biomass as energy source

UNIT IV

Geothermal energy- wind energy- ocean thermal energy conversion(OTEC)-energy from waves and tides(basic ideas, nature, applications, merits and demerits)

UNIT V

Energy storage and impacts of Non-conventional energy: Conversion of energypatterns of energy consumption in domestic, industrial, transpotation, agricultural sectors- conservation principles in these sectors- energy crisis and possible solutionsenergy options for the developing countries- energy storage and hydrogen as a fuel (basics)-impact due to non-conventional energy sources-global warming

TEXT BOOKS

1. Rajamaanar, 2004, Environmental Studies. **REFERENCE BOOKS** 1. Sukhatme, *Solar Energy*, McGraw-Hill Inc., US, 2nd Revised Edition,1997.

54

(15 hours)

(15 hours)

(15 hours)

YEAR- III	DDA CTICAL VI	PHP606
SEMESTER - VI	PRACTICAL -VI	HRS/WK-6
PRACTICAL - 6		CREDIT-4

(Any Twelve out of Sixteen can be selected)

- 1. Construction of a full wave rectifier-solid state using four diodes
- 2. 5V Ic regulated power supply characteristics
- 3. RC-coupled amplifier using transistor- Double statge(voltage gain and variation with load)
- 4. Hartley oscillator
- 5. Colpitt's oscillator
- 6. NAND, NOR universal gates
- 7. Half adder and Full adder mixture of gates
- 8. Half subtractor and Full subtractor- mixture of gates
- 9. Multiplexer and demultiplexer
- 10. Microprocessor programming 8-bit Addition and Subtraction.
- 11. Microprocessor programming 8-bit Multiplication and Division.
- 12. RS, D-flip flop, Clocked RS Flip flop using NAND gates only
- 13. Four bit ripple counter
- 14. Verification of De Morgan's theorem.
- 15. Basic logic gates using transistor –AND, OR & NOT gates.
- 16. OP AMP inverting-Non inverting-Summing-Difference amplifier-Voltage follower-Averager

Question Paper Pattern -UG THEORY EXAMINATION Continuous internal assessment (CIA) UG (25 marks)

- Two internal Examinations
- Assignment / Seminar

• Attendance

Total

15 marks 5 marks 5 marks

25 marks

External Examination (75 marks)

Time: 3 Hours

Max. Marks: 75

Section – A ($10 \ge 2 = 20$) (Two questions from each Unit) Section – B ($5 \ge 25$) (Answer all the questions) Section C ($3 \ge 10 = 30$) (Answer any Three Questions out of five)

PRACTICAL EXAMINATION

Continuous internal assessment (CIA) (40 marks)Based on the periodical evaluation of record &Experiments assessed by the staff in charge- 20 marksModel Practical- 20 marksExternal Examination (60 marks)

3 Hrs. Exam Total Marks: 60 Experiment 50 Marks Record 10 Marks