ST. JOSEPH'S COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) CUDDALORE -1

P.G. AND RESEARCH DEPARTMENT OF PHYSICS

BOARD OF STUDIES –II

c. M.Phil., PHYSICS

SYLLABUS 2021-2022

	PG AND RESEARCH DEPARTMENT OF PHYSICS												
	CURRICULUM TEMPLATE												
c. M.Phil., Physics													
SEMESTER – I													
S. No		Part Hours/ Week C		Credit	Course Code	Course Title	Maximum Marks						
INU			WEEK		Coue		CIA	ESE	TOTAL				
1	III	Core Theory-1	7	5	MPH101	Research Methodology	25	75	100				
2	III Core Theory-2		7	5	MPH102	Advanced Physics-I	25	75	100				
	Sem	ester Total	14	10			50	150	200				

M.Phil. PH		MPH101
SEMESTER –I	RESEARCH METHODOLOGY	HRS/WK-7
CORE - I		CREDIT-5

OBJECTIVES:

To know about the objectives of research methodology and learn about research writing, computational and numerical methods and gain knowledge to figure out the errors in research problems.

COURSE OUTCOMES (CO):

- CO1: To know about the various types of research methodology
- CO2: Understand various types of thesis writing
- CO3: To know the errors and approximations in research problem
- **CO4:** To understand the various numerical methods
- **CO5:** Understand the basic computer based data analysis

Mapping of course outcomes with the program specific outcomes

SEMESTER						COURSE TITLE:					Hours:	Credit:		
	IVMPH101CourseProgramme Outcomes POs						RESEARCH METHODOLOGY						5	
Course Outcomes	Prog	ramm	le Ou	lcome	s PUs	Proş	Programme Specific Outcomes PSOs						Mean Score	
COs PO1 PO2 PO3 PO4 PO5 P					PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	1	CO's		
CO1	3.2	3.8	4.1	3.5	3	2.8	3.5	3.1	4	3	3.2	3.	38	
CO2	3.5	3.2	3.2	3	3.5	3.6	4	3.6	3	2.6	3.8	3.	36	
CO3	3.5	4.1	3.2	2.6	3	3.2	3	3.5	3.5	3.5	3	3.	28	
CO4	3.2	3.8	3	4	3	4	3.5	2.8	3.5	3	3.6	3	.4	
CO5	4	3.5	3.5	3.2	3.5	2.5	3.5	3	4	3	3.5	3.	38	
Mean Overall Score										3.	.36			

Result: The Score for this course is 3.36 (High)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%		
Scale	1	2	3	4	5		
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0		
Quality	Very Poor Poor Mod		Moderat	e High	Very High		
	J		Value Scali	ng			
Mean	Score of COs=	Total Values Total No.of POs &	V	lean Overall Score of	f COs= Total Mean Scores Total No.of COs		

This course is having **High** association with Programme Outcome and Programme Specific Outcome.

UNIT - I

Research Methodology: Meaning of research - Objectives of research - Motivation of research - Types, Approaches and Significance - Method Versus Methodology - Research in Scientific methods - Research Process - Criteria for Good Research - Problem Encountered by Research in India. Research Problem - Selecting the problem - Necessity of defining the problem - Techniques involved in Defining the problem - Research Design - Needs and Features of Good Design - Different Research Design - Basic Principles of Experimental Design - Funding Agencies.

UNIT - II

Thesis Writing: Meaning of Research Report-Logical Format for Writing Thesis and Paper-Essential of Scientific Report: Abstracts, Introduction, Review of Literature, Material and Method and Discussion-Write Up steps in drafting report- effective illustrations: Tables and figures- Reference styles: Harvard and Vancouver systems-synopsis writing-overhead projector presentation-power point presentation.

UNIT - III

Errors And Approximations: Statistical analysis of data-Mean meridian, mode and Standard Deviation - Correlation - Comparison of sets of data- Chi Squared analysis for data - Characteristics of probability Distribution - Binomial, Poisson and Normal Distribution-Principle of Least Square Fitting - Curve fitting - theory of Errors - Types and Sources of Errors - Errors and residue.

UNIT - IV

Numerical Methods: Newton's forward and backward difference interpolation formula-Numerical integration by Trapezoidal &Simpson' one third rule-Taylor series .Differential equation method

UNIT - V

Computer Based Data Analysis: Origin 8-Data analysis and Graphing workspace-Workbook-Worksheet& Worksheets column-Importing and Exporting data-Graphing: Customizing and formatting the graph-Fitting analysis-Introduction to MATLAB. Introduction to Gaussian method-Quantum analysis-Ab initio approximation method

REFERENCE BOOKS:

- 1. Research Methodology, Methods And Techniques- C. R. Korthari-WishwaPrakasam Publications, II Edition.2004
- 2. A Handbook of Methodology of Research Rajammal P.A. Devadass-Vidyalaya Press.2011
- 3. Statistical Methods- S. P. Gupta 2007

4. Numerical methods –B.D.Guptha 2013

M.Phil. PH		MPH102
SEMESTER –I	ADVANCED PHYSICS-I	HRS/WK-7
CORE - II		CREDIT-5

OBJECTIVES:

To understand the types and phases of solids particularly about nuclear and molecular mechanics

COURSE OUTCOMES:

- CO1: To know about Schrodinger and Klein Gordon field equation
- **CO2:** Understand various types of nuclear models and quark
- CO3: To know types of bonds in solids
- **CO4:** Understand the dielectric studies in different phase
- **CO5:** Understand the non linear and molecular mechanics

Mapping of course outcomes with the program specific outcomes

SEMESTER COURSE CODE:					COURSE TITLE:					Hours: Credi		
- IV	MPH102					ADVANCED PHYSICS-I						7 5
Course	Prog	ramn	ne Ou	tcome	s POs	Pro	Programme Specific Outcomes PSOs					
Outcomes												
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	of CO's
CO1	3.5	2.5	4.1	3.5	3.5	2.5	3	3.5	4.2	3.2	3.2	3.33
CO2	3.6	3.2	3.6	3	3.5	2.8	4.1	3.6	3.7	2.3	3.5	3.35
CO3	3.5	4.3	3.5	2.8	3	3.6	3.5	3.5	3.7	4.2	3.3	3.53
CO4	3.2	3.6	3	4	3	3.5	3.4	2.8	3.4	3.5	3.6	3.36
CO5	4	3.5	3.5	3.2	3.6	2.5	3.5	3.2	4	3.2	3.5	3.42
Mean Overall Score										3.40		

Result: The Score for this course is 3.40 (High)

Mapping	1-20%	21-40%	41-60%	61-80%	81-100%
Scale	1	2	3	4	5
Relation	0.0-1.0	1.1-2.0	2.1-3.0	3.1-4.0	4.1-5.0
Quality	Very Poor	Poor	Moderate	High	Very High
	J I	Valu	e Scaling		
Mean Sco	ore of COs= ——	otal Values No.of POs & PSOs	Mean Overal	l Score of COs=	Total Mean Scores Total No.of COs

This course is having **High** association with Programme Outcome and Programme Specific Outcome

UNIT - I

Quantum Mechanics: Second Quantization of Schrodinger and Klein –Gordon fieldscreation and annihilation operators- Communication relations- second Quantization of Dirac field- covariant and anti-communication relation for Dirac field.

UNIT – II

Nuclear and Particle Physics: Compound nucleus and statistical theory- experimental evidence- statistical assumption – average cross section- angular distribution- transmission coefficients- level density- decay of the statically compound nucleus- emission of charged particles. Symmetries and conservation laws – Gell Mann Nishijima formula – CPT invariance – Quark model

UNIT – III

Solid State Physics: Types of bonds in crystals-Ionic, Valence, Metallic, Vander Waals and hydrogen bonding-Band structure theory – Band structure for some semiconductors – Semiconductor transport theory – Basis of continuity equation – Kronig penny model - Theory of generation and recombination – theory of PN junction – solar cells – Ionic conductivity – Normal and super ionic conductors – Application of super ionic solids - Fuel cells, Electro chromic display.

UNIT – IV

Dielectric Studies: Basic concepts of dielectrics: static fields – Time dependent fields – Static dielectric constant: Dipolar interaction – dipolar molecules in gases and dilute solutions – Onsager equation – Debye equations – Dielectric relaxation and loss – Distribution of relaxation time – Complex plane diagrams – Cole- Cole, Cole- Davidson plots.

UNIT – V

Non-Linear And Molecular Mechanics: Basis of nonlinearity – Linear and nonlinear oscillators – Autonomous and non-autonomous system – Dynamical systems. The energy calculations – Energy minimization – Force field parametrization – Conformation analysis – Solvation – Monte Carlo methods – Molecular dynamics – Free energy calculation.

REFERENCE BOOKS:

- 1. Advanced Quantum Mechanics Sathyaprakash 2004
- 2. Elementary Particles D. Griffiths.2010
- 3. Solid state physics by Sexena& Gupta Sexena
- 4. Lasers &Non linear optics, B.B.Laud-New age International pvt. Ltd, 2nd ed. 2009

Question Paper Pattern (as per your board of studies recommendations) THEORY EXAMINATION

Internal Examination (25 marks)

Two Internal Examinations Assignment / Seminar Total

15 marks 10 marks 25 marks

(75 marks)

Question Pattern

External Examination

M. Phil. Physics

Time: 3 Hours

Max. Marks: 75

Section A (5×15=75 marks) (Answer Any 5 out of 8)