ST. JOSEPH'S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1

DEPARTMENT OF STATISTICS

SYLLABUS 2018-2019

STATISTICS – CURRICULUM DESIGN TEMPLATE

Semester	Degree	Subject Title	Subject Code	Hours	Credit
I	I B.Sc. Mathematics	Allied Statistics - I	ASMT101P	6	4
I	I M. Com	Quantitative Techniques	PCM701A	6	4
II	I B.Sc. Mathematics	Allied Statistics - II	ASMT202T	6	4
I & II	I B.Sc. Mathematics	Allied Statistics Practical	ASMTP202T	2	2
II	I BCA	Statistical Methods	ASCA202T	5	4
II	I BBA (CA)	Business Statistics and Operations Research	17ABB02	5	4
III	II B.Sc. Computer Science	Statistical Methods for Computer Applications – I	ASCS301Q	6	4
III	II B. Com/ II BBM	Business Statistics	ASCM301Q/ ASBM301Q	5	4
III	II M.Sc. Maths	Stochastic Processes	PMT914T	5	4
IV	II B.Sc. Computer Science	Statistical Methods for Computer Applications – II	ASCS402Q	6	4
III & IV	II B.Sc. Computer Science	Statistical Methods for Computer Applications Practical	ASCSP402T	2	2
III	II M.Sc. Microbiology	Biostatistics	EPMB911Q	5	3

I B.Sc. MATHEMATICS		ASMT101Q
SEMESTER – I	ALLIED STATISTICS – I	HRS/WK – 6
ALLIED		CREDITS – 4

✓ To train the students in mastering the techniques of various applications in Statistics.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand the Definition, Uses, Merits and demerits, relationship of Location, Dispersion, Skewness and Kurtosis
- **CO2:** Understand the concept of Probability and its related theorem
- CO3: Know the concept of random variables and its use in various density functions
- > CO4: Understand the concept of Mathematical Expectation its properties and Chebychev's inequality
- > CO5: Understand the concept of Correlation and Regression and its uses in various fields

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER I	COURSE CODE: ASMT101Q	TITLE OF THE PAPER: ALLIED STATISTICS – I				HOURS:6	CREDITS:4
COURSE OUTCOMES		GRAMME OUTCOMES(PO) PO2 PO3 PO4 PO5				MEAN SCO	ORE OF CO'S
CO1	4	4	4	4	4		4
CO2	5	5	5	4	5		4.8
CO3	4	4	4	4	4		4
CO4	4	4	4	4	5	4.2	
CO5	5	5 5 5 5				5	
Mean Overall Score						4.4	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT-I

Measures of Locations and Dispersion. Skewness and Kurtosis.

UNIT - II

Probability: Basic definitions – Axiomatic approach to Probability – Basic theorems on Probability – Addition theorem on probability and related problems – Conditional probability – Multiplication theorem of probability and related problems – Independent events – Pair wise Independent events (definition only) – Baye's theorem and related problems.

UNIT - III

Random Variable – Distribution function and their properties - Discrete random Variable – Probability mass function and simple problems - Continuous random variable – Probability density function and simple problems – Two dimensional random variables – Joint probability mass function, Joint probability density function and simple problems.

UNIT - IV

Mathematical Expectations: Properties of Expectations – Variance, Covariance and their properties. Moment generating function – Characteristics function – Cumulants – Chebychev's inequality (only theorem).

UNIT-V

Correlation: Scatter diagram, Karl Pearson's Coefficient of correlation, Spearman's rank correlation - Partial and Multiple correlations (3 variables only). Regression analysis: Simple regression equations.

Text Books:

- 1. "Fundamentals of Mathematical Statistics" (11th edition 2002), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.

- 1. "Mathematical Statistics" (1st edition 2002), Vittal. P. R., Margham Publications, Chennai-
- 2. "Introduction to Probability and Statistics" (2nd edition 1939), Vijay Rohatgi. K. and Ehsanes Saleh. A.K., John Wiley & Sons, Inc., New York.
- 3. "Introduction to Theory of Statistics" (3rd edition 2001), Alexander M. Mood, Franklin A. Graybill and Duance C Boes, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 4. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.

I B. Sc MATHEMATICS	ALLIED STATISTICS II	ASMT202T
SEMESTER – II	ALLIED STATISTICS – II	HRS/WK – 6
ALLIED		CREDITS – 4

✓ To motivate the students to apply the statistical techniques in their respective major subjects.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand the Discrete distribution, derivation of Mean and variance and its moment generating functions
- > CO2: Understand the Continuous distribution, derivation of mean and variance, concept of sampling distribution and its relationship
- > CO3: Know the concept of tests of significance (small sample) test and how to apply in real life situation
- > CO4: Understand the concept of large sample test and its proportion, mean and Standard deviation of correlation coefficients
- > CO5: Understand the concept of Analysis of variance, and learn how to classify and analyze the problems in various fields

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER II	COURSE CODE: ASMT202T	TITLE ALLIED				HOURS:6	CREDITS:4	
COURSE OUTCOMES		PROGRAMME OUTCOMES(PO)					MEAN SCORE OF CO'S	
	PO1	PO2	PO3	PO4	PO5			
CO1	4	4	4	4	4		4	
CO2	5	5	5	4	5	4.8		
CO3	4	4	4	4	4	4		
CO4	4	4 4 4 5			4.2			
CO5	5	5	5	5	5		5	
Mean Overall Score						4	4.4	

Associatio	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
n					
Scale	1	2	3	4	5
Interval	0<=rating<=	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

UNIT-I

Discrete distributions: Binomial distribution, Poisson distribution and Geometric distribution – Derivations of mean, variance and moment generation functions.

UNIT - II

Continuous distributions: Uniform (mean, variance and m. g. f.), Exponential (mean, variance and m. g. f.) and Normal distributions (m. g. f., characteristics and area problems). Sampling distributions: Student's t, F and χ^2 distributions (derivations only) and their relationships.

UNIT - III

Tests of Significance (small samples) based on t and F distributions with respect to mean, variance and correlation coefficient. Chi-Square distribution: Test for independence of attributes.

UNIT - IV

Tests of significance (large samples) – Proportion, Mean, Standard deviation and Correlation Coefficient.

UNIT-V

Analysis of Variance: One way and two way classifications. Design of experiments: CRD, RBD and LSD.

Text Books:

- 1. "Fundamentals of Mathematical Statistics" (11th edition 2002), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.
- 3. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.

- 1. "Mathematical Statistics" (1st edition 2002), Vittal. P. R., Margham Publications, Chennai 17
- 2. "Introduction to Probability and Statistics" (2nd edition 1939), Vijay Rohatgi. K. and Ehsanes Saleh. A.K., John Wiley & Sons, Inc., New York.
- 3. "Introduction to Theory of Statistics" (3rd edition 2001), Alexander M. Mood, Franklin A. Graybill and Duance C Boes, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 4. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.

I B.Sc. MATHEMATICS	ALLIED STATISTICS PRACTICAL	ASMTP201Q
SEMESTER – I & II	ALLIED STATISTICS PRACTICAL	HRS/WK – 2
ALLIED		CREDITS – 2

✓ To train the students in mastering the techniques of various statistical applications.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand how to solve measures of Location, Dispersion, Skewness and Kurtosis problems
- > CO2: Understand how to solve Karl Pearson's coefficients of correlation, Rank correlation and two regression equations
- > CO3: Set up the hypothesis for small sample test problems and goodness of 1
- > CO4: Set up the hypothesis for large sample test problems and its mean, proportions
- > CO5: Solve and analyze ANOVA for One way classifications, Two way classifications CRD, RBD and LSD

Relationship Matrix Course Outcomes and Programme Outcomes

Relationship Waterix Course Outcomes and Frogramme Outcomes								
SEMESTER I & II	COURSE CODE: ASMTP201Q	TITLE OF THE PAPER: ALLIED STATISTICS PRACTICAL			HOURS:2	CREDITS:2		
COURSE OUTCOMES						MEAN SCORE OF CO'S		
OUTCOMES	PO1	PO2	PO3	PO4	PO5			
CO1	4	4	4	4	4		4	
CO2	5	5	5	4	5		4.8	
CO3	4 4 4 4 4				4			
CO4	4	4	4	4	5	4.2		
CO5	5	5	5	5	5	5		
Mean Overall Score						4.4		

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Measures of Location and Dispersion - Skewness and Kurtosis.

UNIT – II

Correlation: Karl Pearson's Coefficient of Correlation, Spearman's Rank Correlation. Regression analysis: Simple regression equations.

UNIT - III

Tests of Significance (Small samples) based on t, F and Chi –Square distributions with respect to Mean and Variance. Test for independence of attributes. Fitting of Binomial, Poisson and Normal distributions (area method only) and test for goodness of fit.

UNIT – IV

Tests of significance (large samples) based on Mean and Proportions.

UNIT -V

Analysis of Variance: One way and two way classifications. Design of experiments: CRD, RBD and LSD.

Text Books:

- 1. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.
- 2. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.

Reference Books:

- 1. "Mathematical Statistics" (1st edition 2002), Vittal. P. R., Margham Publications, Chennai 17
- 2. "Introduction to Probability and Statistics" (2nd edition 1939), Vijay Rohatgi. K. and Ehsanes Saleh. A.K., John Wiley & Sons, Inc., New York.
- 3. "Introduction to Theory of Statistics" (3rd edition 2001), Alexander M. Mood, Franklin A. Graybill and Duance C Boes, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 4. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.

Question Paper Pattern

Time: 3 hours Marks: 60

 $Part - A : (3 \times 20 = 60 \text{ marks})$

Answer any Three questions out of Five questions (with open choice)

II B.Sc COMPUTER SCIENCE		ASCS301T
SEMESTER – III	STATISTICAL METHODS FOR	HRS/WK – 6
ALLIED	COMPUTER APPLICATIONS – I	CREDITS – 4

✓ To motivate the students to understand the theoretical concepts in Statistics.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand the Scope and limitation of Statistical methods and Diagrammatic and Graphical representation of data
- > CO2: Understand the concept of measures of Location, Dispersion, Absolute and relative measures
- > CO3: Know the concept of measures of skewness and learn how to measure the samples by Karl Pearson's, Bowley's, Kelly's Coefficient of Skewness and Skewness and Kurtosis.
- > CO4: Understand the concept of Probability and its related theorem
- > CO5: Know the concept of random variables and its use in various density functions Understand the concept of Mathematical Expectation its properties and Chebychev's inequality

Relationship Matrix Course Outcomes and Programmed Outcomes

•							
SEMESTER III	COURSE CODE: ASCS301T	TITLE OF THE PAPER: STATISTICAL METHODS FOR COMPUTER APPLICATIONS – I			HOURS:6	CREDITS:4	
COURSE OUTCOMES	PROG	GRAMME OUTCOMES(PO)				MEAN SCORE OF CO'S	
	PO1	PO2	PO3	PO4	PO5		
CO1	4	3	3	5	4		3.8
CO2	4	5	4	4	5		4.4
CO3	5	4	4 3 4 5			4.2	
CO4	3	4 3 3 4			3.4		
CO5	4	5 3 5 4			4.2		
Mean Overall Score						4	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Introduction – Scope and limitations of Statistical methods – Classification of data – Tabulation of data – Diagrammatic and Graphical representation of data – Graphical determination of Percentiles and Quartiles.

UNIT – II

Measures of locations, Measures of dispersion – Absolute and Relative measures

UNIT - III

Measures of Skewness: Karl Pearson's, Bowley's, Kelly's Coefficient of Skewness. Kurtosis based on Moments.

UNIT - IV

Correlation: Scatter diagram, Karl Pearson's, Spearman's rank and Concurrent deviation methods. Regression Analysis: Simple regression equations.

UNIT-V

Curve fitting by the method of least squares: Straight-line, Second-degree equation, Power Curve and Exponential Curves.

Text Books:

- 1. "Fundamentals of Mathematical Statistics" (11th edition 2002), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.

- 1. "Statistics (Theory and Practice)" (3rd edition 1993), Pillai. R. S. N. and Bagavathi. V. Sultan Chand & Sons, New Delhi.
- 2. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.
- 3. "Mathematical Statistics" (1st edition 2002), Vittal. P. R., Margham Publications, Chennai 17.

II B.Sc. COMPUTER SCIENCE	STATISTICAL METHODS FOR	ASCS402T
SEMESTER – IV	COMPUTER APPLICATIONS –	HRS/WK – 6
ALLIED	II	CREDITS – 4

✓ To motivate the students to understand the theoretical concepts in statistics and make them to apply the concepts in their respective major subjects

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand the concept of Correlation and Regression
- > CO2: Understand Binomial, Poisson and Normal distributions
- > CO3: Know the concept of tests of significance -small sample and large sample test
- > CO4: Understand the concept of Analysis of variance and problems related to CRD, RBD and LSD
- > CO5: Understand the diagrammatic representation of data, average, median, mode, STDEV, VAR, skewness and kurtosis functions using MS- Excel

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER IV	COURSE CODE: ASCS402T	STATISTICAL METHODS				HOURS:6	CREDITS:4		
COURSE	PROC	GRAMME	MEAN SCORE OF CO'S						
OUTCOMES	PO1	PO2	PO3	PO4	PO5				
CO1	4	3	3	5	4		3.8		
CO2	4	5	4	4	5		4.4		
CO3	5	4	3	4	5	4.2			
CO4	3	4	3	3	4	3.4			
CO5	4	5	3	5	4	4.2			
Mean Overall Score							4		

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Sample Space – events – definition of Probability, Addition and Multiplications theorems – simple problems. Conditional probability – Baye's theorem (proof only).

UNIT - II

Concept of Random Variable – Probability mass function, Probability density function and Distribution function. Mathematical Expectation: Properties of expectations, Chebychev's inequality (only theorem).

UNIT - III

Standard distributions: Binomial (mean and variance) Poisson (mean and variance) and fitting of these distributions. Normal distributions (characteristics and area problems).

UNIT - IV

Concept of Sampling distributions – Standard Error – Tests of Significance based on t, Chi – Square and F distributions with respect of Mean, Variance and Correlation coefficient. Chi – Square test for independence of attributes. Goodness of fit. Large sample test based on Mean and Proportions.

UNIT-V

Analysis of Variance: One way and two way classifications. Basic principles of design of experiments: Randomization, Replication and Local Control – CRD, RBD and LSD.

Text Books:

- 1. "Fundamentals of Mathematical Statistics" (11th edition 2002), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.
- 3. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.

- 1. "Statistics (Theory and Practice)" (3rd edition 1993), Pillai. R. S. N. and Bagavathi. V., Sultan Chand & Sons, New Delhi.
- 2. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.
- 3. "Mathematical Statistics" (1st edition -2002), Vittal. P. R., Margham Publications, Chennai -17.

II B.Sc COMPUTER SCIENCE	STATISTICAL METHODS FOR	ASCSP401T
SEMESTER – III & IV	COMPUTER APPLICATIONS	HRS/WK – 2
ALLIED	(PRACTICAL)	CREDITS – 2

✓ To motivate the students to apply the statistical techniques in their respective major subjects.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Construct Univariate and Bivariate frequency distributions, represent the statistical data diagrammatically and graphically
- > CO2: Solve measures of Location, Dispersion, Skewness and Kurtosis problems
- > CO3: Solve Curve fitting, Karl Pearson's coefficients of correlation, Rank correlation and two regression equations problems
- > CO4: Solve fitting of Binomial, Poisson, Normal distributions. Hypothesis testing for small and large sample test problems
- > CO5: Solve and analyze ANOVA for CRD, RBD and LSD

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER III & IV	COURSE CODE: ASCSP401T	TITLE OF THE PAPER: STATISTICAL METHODS FOR COMPUTER APPLICATIONS (PRACTICAL)				HOURS:2	CREDITS:2
COURSE OUTCOMES	PROGRAMME OUTCOMES(PO) PO1 PO2 PO3 PO4 PO5					MEAN SC	ORE OF CO'S
CO1	4	3	3	5	4		3.8
CO2	4	5	4	4	5		4.4
CO3	5	5 4 3 4 5					4.2
CO4	3	4 3 3 4					3.4
CO5	4	5 3 5 4					4.2
Mean Overall Score						4	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Construction of Univariate and Bivariate frequency distributions with samples of size not exceeding 50. Diagrammatic and Graphical representation of various statistical data and frequency distributions. Cumulative frequency curve and Lorenz curve

UNIT - II

Computation of various Measures of Locations, Dispersion, Skewness and Kurtosis based on moments.

UNIT - III

Curve fitting by the method of least squares, fitting of Straight line, fitting of Second degree polynomial, fitting of Power curve and fitting of Exponential curves. Computation of Karl Pearson's Correlation coefficients, Rank Correlation Coefficient. Simple regression equations.

UNIT - IV

Fitting of Binomial, Poisson, Normal distributions (Area Method) and testing its goodness of fit. Exact tests based on t and F distributions with regard to Mean, Variance and Correlation Coefficient. Large sample tests: Based of Mean and Proportions. Chi-Square distribution: Test for independence of attributes.

UNIT-V

Design of Experiments: CRD, RBD and LSD.

Text Books:

- 1. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.
- 2. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 3. "Practical Statistics" (2nd edition 2003), Pillai. R.S.N and Bagavathi, Sultan Chand & Sons, New Delhi.

Reference Books:

- 1. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Statistics (Theory and Practice)" (3rd edition 1993), Pillai. R. S. N. and Bagavathi. V. Sultan Chand & Sons, New Delhi.
- 3. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.
- 4. "Business Statistics" (1st edition 2008), Bharat Jhunjhunwala, S. Chand & Company Ltd.
- 5. "Mathematical Statistics" (1st edition 2002), Vittal. P. R., Margham Publications, Chennai 17.

Question Paper Pattern

Time: 3 hours Marks: 60

Answer any Three questions out of five questions (with open choice)

I BCA	CTATICTICAL METHODS	ASCA202T
SEMESTER – II	STATISTICAL METHODS	HRS/WK – 5
ALLIED		CREDITS – 4

✓ To motivate the students to apply the statistical techniques in their respective major subjects. Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand the Definition, Uses, Merits and demerits of Central tendency, Measures of Dispersion
- > CO2: Understand the Definition, Uses, Merits and demerits of Skewness and Kurtosis
- > CO3: Understand the concept of Correlation and Regression and its uses in various fields
- > CO4: Know the concept of tests of significance (small sample) test and howto apply in real life situation
- > CO5: Understand the concept of large sample test and its proportion, meanand Standard deviation of correlation coefficients

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER II	COURSE CODE:	CODE: STATISTICAL				HOURS:5		
	ASCA202T PROG							
COURSE						MEAN SCORE OF CO'S		
OUTCOMES	PO1	PO2	PO3	PO4	PO5			
CO1	4	4	4	4	4		4	
CO2	5	5	5	4	5		4.8	
CO3	4	4	4	4	4	4		
CO4	4	4	4	4	5	4.2		
CO5	5	5	5	5	5	5		
Mean Overall Score							4.4	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Measures of Central tendency: Arithmetic Mean, Median, Mode, Harmonic Mean and Geometric Mean. Measures of Dispersion: Range, Quartile Deviation, Mean Deviation, Standard Deviation and Coefficient of Variation.

UNIT - II

Measures of Skewness: Karl Pearson's coefficient of Skewness, Bowley's coefficient of Skewness and Kelly's coefficient of Skewness. Kurtosis

UNIT – III

Correlation analysis: Karl Pearson's coefficient of correlation, Spearman's rank correlation coefficients. Regression analysis: Simple regression equations.

UNIT - IV

Tests of Significance (small samples) based on t, F distributions with respect of Mean, Variance and Correlation coefficient. Test of Significance based on Chi-Square test: Test for Independence of attributes.

UNIT -V

Test of Significance (large samples) based on Population Proportion, Mean, Variance and Correlation coefficient.

Text Books:

- 1. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.
- 2. "Fundamentals of Mathematical Statistics" (11th edition 2002), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.

- 1. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Statistics (Theory and Practice)" (3rd edition 1993), Pillai. R. S. N. and Bagavathi. V. Sultan Chand & Sons, New Delhi.
- 3. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.
- 4. "Business Statistics" (1st edition 2008), Bharat Jhunjhunwala, S. Chand & Company Ltd.
- 5. "Mathematical Statistics" (1st edition 2002), Vittal. P. R., Margham Publications, Chennai 17.

II B.Com/II BBM	DISTRICC CT A TICTICC	ASBM 301Q /ASCM 301Q	
SEMESTER – III	BUSINESS STATISTICS	HRS/WK – 5	
ALLIED		CREDITS – 4	

✓ To motivate the students to apply the statistical techniques in their respective major subjects.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand Statistics, collection of data, classification of data into table form and measures of central tendency
- **CO2:** Understand the concept of measures of dispersion
- > CO3: Understand the concept of Correlation and Regression
- > CO4: Understand the concept of index number, constructing, trending, learning and predicting situation
- > CO5: Understand the concept of time series, formation of trend, trend line and learning measures of seasonal variation time

Relationship Matrix Course Outcomes and Programme Outcomes

Treatment in the course of the								
SEMESTER III	COURSE CODE: ASBM301Q/ ASCM301Q	TITLE OF THE PAPER: BUSINESS STATISTICS				HOURS:5	CREDITS:4	
COURSE OUTCOMES	PROG	PROGRAMME OUTCOMES(PO)				MEAN SCO	RE OF CO'S	
	PO1	PO2	PO3	PO4	PO5			
CO1	4	3	3	5	4	3	3.8	
CO2	4	5	4	4	5	4	l.4	
CO3	5	4	3	4	5	4.2		
CO4	3	4	3	3	4	3.4		
CO5	4	5	3	5	4	4.2		
Mean Overall Score						4		

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Introduction: Collection of data – Primary data and Secondary data – Different methods of collecting primary data – Classification and Tabulation of Statistical data. Frequency distribution: Simple and Cumulative. Measures of Central value: Arithmetic Mean, Median, Mode, Geometric Mean and Harmonic Mean.

UNIT - II

Measures of Dispersion: Range, Quartile Deviation, Mean Deviation, Standard Deviation-Combined standard deviation and Coefficient of Variation. Measures of Skewness: Karl Pearson's and Bowley's methods.

UNIT - III

Correlation: Karl Pearson's coefficient of correlation, Spearman's rank correlation coefficient and Concurrent deviation method. Regression analysis: Simple regression equations.

UNIT - IV

Index numbers – Uses of index Numbers – Problems in the Construction of Index Numbers – Methods of Constructing Index Numbers – Simple Aggregative Method – Weighted Aggregative Indices – Laspeyre's, Paasche's, Bowley's and Fisher Ideal Method – Weighted Aggregative Indices – Quantity and value Indices – Tests of adequacy of Index Numbers: Time Reversal test, Factor Reversal test (problems only). Family Budget method.

UNIT -V

Time Series – Uses and Components. Measurement of Trend: Semi-average method, Moving Average Method (problems up to 5 yearly) – Least Square Method (Fitting of straight line). Measurement of Seasonal Variation: Method of Simple Averages – Ratio-to-trend Method – Link Relative Method.

Text Books:

- 1. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.
- 2. "Business Statistics", Gupta. S. P., Gupta. P. K. and Manmohan.

- 1. "Index Numbers, Applied Statistics" (2nd edition), Mudgett Gupta. O. P. & Ansari. M. A., Kadarnath & Co.
- 2. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.
- 3. "Business Statistics" (1st edition 2008), Bharat Jhunjhunwala, S. Chand & Company Ltd.

I BBA(CA)	BUSINESS STATISTICS AND	17ABBS22
SEMESTER – III	OPERATIONS RESEARCH	HRS/WK – 5
ALLIED		CREDITS – 4

✓ To motivate the students to apply the statistical techniques in their respective major subjects. Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand Statistics, Collection of various data methods and classification of data into table form and measures of central tendency
- > CO2: Understand the concept of measures of dispersion
- > CO3: Understand the concept of Correlation and Regression
- > CO4: Understand the concept of index number, constructing, trending, learning and predicting situation based on period
- > CO5: Understand the concept of time serious, Formation of trend, and planning trend line, learning measures of seasonal variation time

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER III	COURSE CODE: 17ABB02	ODE: BUSINESS STATISTICS				HOURS:5	
COURSE OUTCOMES	PROO	GRAMM PO2	E OUTO	PO4	PO)	MEAN SC	ORE OF CO'S
CO1	4	4	3	5	4		4.4
CO2	4	5	4	4	5		4.4
CO3	5	4	3	4	5		4.2
CO4	5	4	5	5	4		4.6
CO5	4	5	5	5	4		4.6
Mean Overall Score						4.36	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Introduction: Collection of data – Primary data and Secondary data – Different methods of collecting primary data – Classification and Tabulation of Statistical data. Frequency distribution: Simple and Cumulative. Measures of Central value: Arithmetic Mean, Median, Mode, Geometric Mean and Harmonic Mean.

UNIT - II

Measures of Dispersion: Range, Quartile Deviation, Mean Deviation, Standard Deviation-Combined standard deviation and Coefficient of Variation. Measures of Skewness: Karl Pearson's and Bowley's methods.

UNIT – III

Correlation: Karl Pearson's coefficient of correlation, Spearman's rank correlation coefficient. Regression analysis: Simple regression equations.

UNIT - IV

Operations Research – Nature and meaning, Scientific methodology, Scope. Linear programming – Structure and assumption - Graphical method of the solution of linear programming problems (simple problems only).

UNIT -V

Transportation problems - North west corner method, Least cost method and Vogel's approximation method (simple problems only).

Text Books:

- 1. "Business statistics and Operations research" (2nd edition 2009), S.P.Rajagopalan and R.Sattanathan, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.

- 1. "Business Statistics", Gupta. S. P., Gupta. P. K. and Manmohan.
- 2. "Introduction to OR", Dr.P.R.Vittal
- 3. "Operations Research", Hira and Gupta, S.Chand.
- 4. "Business Statistics" (1st edition 2008), Bharat Jhunjhunwala, S. Chand & Company Ltd.

II M.Sc. MATHEMATICS	STACILASTIC DDACESSES	PMT914S
SEMESTER – III	STOCHASTIC PROCESSES	HRS/WK – 6
ALLIED		CREDITS-4

✓ To introduce the basic concepts of Stochastic Processes.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand Stochastic Processes, classification of Stochastic Processes according to time parameter space and state space
- > CO2: Understand the concept Markov Chains, Higher transition probabilities, Chapman-Kolmogrov equation and classification of states
- > CO3: Understand the concept of Poisson process, pure birth process, Yule-Furry process and Birth and Death process and Branching process
- > CO4: Understand the concept of Simple Queuing models (M/M/1: N/FIFO and M/M/1: ∞/FIFO queuing systems) and steady state solutions
- \gt CO5: Understand the concept of Renewal process, relation between F(S) and P(S), delayed recurrent event, renewal density, renewal equation with theorem

Relationship Matrix Course Outcomes and Programme Outcomes

Relationship Watrix Course Outcomes and Frogramme Outcomes							
SEMESTER III	COURSE CODE: PMT914S	TITLE OF THE PAPER: STOCHASTIC PROCESSES				HOURS:6	CREDITS:4
COURSE OUTCOMES	PROGRAMME OUTCOMES(PO) PO1 PO2 PO3 PO4 PO5					MEAN SC	ORE OF CO'S
CO1	4	2	2		1		2.0
CO1	4	3	3	5	4		3.8
CO2	4	5	4	4	5		4.4
CO3	5	4 3 4 5				4.2	
CO4	3	4	3	3	4		3.4
CO5	4	5	3	5	4		4.2
Mean Overall Score						4	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Definition of Stochastic Processes – Classification of Stochastic Process according to Time parameter space and State space – Examples of Stochastic Processes.

UNIT - II

Markov Chains: Definition and examples – Higher transition probabilities – Chapman-Kolmogrov equation – Classification of States – Limiting behavior (Concept and applications only) – Examples of Markov Chains.

UNIT – III

Poisson process: Poisson process, pure birth process, Yule-Furry process and Birth and Death process — simple examples. Branching process: Properties — Generating function of Branching process — Probability of Extinction.

UNIT - IV

Simple Queuing models (M/M/1: N/FIFO and M/M/1: ∞/FIFO queuing systems) – Steady state solutions – Simple problems.

UNIT-V

Renewal process: Definition – renewal process in discrete time – relation between F(S) and P(S) – renewal interval – delayed recurrent event – renewal process in continuous time – renewal function and renewal density – renewal equation – stopping time – elementary renewal theorem.

Text Book:

1. "Stochastic Process" (1982), Medhi. J., Wiley Eastern Limited, New Delhi.

- 1. "Stochastic Process" (1965), Prabhu. N. U., Macmillan, New York.
- 2. "Introduction to Stochastic Processes", (1975), Cinlar. E., John Wiley & Sons, London.
- 3. "A first course in Stochastic Processes" (1975), Karlin. S. and Taylor. H. M., Academic Press, New York.
- 4. "A second course in Stochastic Processes" (1981), Karlin. S. and Taylor. H. M., Academic Press, New York.
- 5. "An Introduction to Stochastic Processes", (1979), Kannan. D., North Holland, New York.
- 6. "Stochastic Process" (1983), Ross. S. M., John Wiley & Sons, Inc., New York.

I M. Com		PCM701Q
SEMESTER – I	QUANTITATIVE TECHNIQUES	HRS/WK – 6
ALLIED		CREDITS – 5

✓ To apply statistical techniques for interpreting and drawing conclusion for business problems.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand the concept of Probability and Mathematical expectations
- > CO2: Setup the hypothesis for small and large samples using in t, F and chi-square
- > CO3: Understand the concept of Analysis of variance using CRD, RBD and LSD
- > CO4: Understand the concept of LPP, optimal solution transportation problems using North West, Least cost and Vogel's approximation methods
- > CO5: Understand the concept of inventory model, definition and techniques of inventory control- EOQ model

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER I	COURSE CODE: PCM701Q	TITLE OF THE PAPER: QUANTITATIVE TECHNIQUES				HOURS:6	CREDITS:5
COURSE	PROGRAMME OUTCOMES(PO) OURSE					MEAN SCORE OF CO'S	
OUTCOMES	PO1	PO2	PO3	PO4	PO5		
CO1	4	3	3	5	4		3.8
CO2	4	5	4	4	5		4.4
CO3	5	4	3	4	5		4.2
CO4	3	4	3	3	4		3.4
CO5	4	5	3	5	4		4.2
Mean Overall Score						4	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Sample Space – events – definition of Probability, Addition and Multiplications theorems – Conditional probability – Baye's theorem – Simple problems.

UNIT – II

Tests of Significance (large samples): Based on Mean and Proportions. Tests of Significance (Small Samples): t and Chi-Square tests for testing mean, variance and correlation coefficient. Chi-Square test and test for independence of attributes.

UNIT - III

Analysis of Variance: One way and two way classifications. Design of experiments: Basic principles – CRD, RBD and LSD.

UNIT - IV

LPP-feasible and optimal solutions-Graphical method, simplex methods (excluding artificial variable techniques)- simple problems only –Transportation problems -North west corner method, Least cost method and Vogel's approximation method(simple problems only)

UNIT – V

Inventory model-General concept and definitions-various cost concepts – the technique of inventory control –EOQ model.

Text Books:

- 1. "Fundamentals of Mathematical Statistics" (11th edition 2002), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Resource Management Techniques" (Operations Research)(Revised Edition June -2009) A.R.Publications ,Chennai.

- 1. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 2. "Business Statistics" (1st edition 2008), Bharat Jhunjhunwala, S. Chand & Company Ltd.
- 3. Business Statistics and Operations Research, (2009), P.R. Vittal., Margham Publications.

II M. Sc MICROBIOLOGY	DIOCTATICTICS	EPMB911S
III SEMESTER	BIOSTATISTICS	HRS/WK – 5
ELECTIVE		CREDITS - 3

✓ To apply statistical techniques for interpreting and drawing conclusion for biological research.

Course Outcomes:

At the end of the Course the students will be able to

- > CO1: Understand the various methods of collecting Primary and Secondary data, Measures of central tendency and dispersion
- > CO2: Understand the concept of Correlation and Regression and its uses in various fields
- > CO3: Understand the concept of sampling and non sampling error, advantage and its disadvantages in sampling, Probability and non probability sampling methods
- > CO4: Setup the hypothesis for small and large samples using in t, F and chi-square
- > CO5: Know the concept of Analysis of variance and classified into various method of CRD, RBD and LSD

Relationship Matrix Course Outcomes and Programme Outcomes

SEMESTER III	COURSE CODE: PMB911S	TITLE OF THE PAPER: BIOSTATISTICS				HOURS:5	CREDITS:3
COURSE OUTCOMES	PROGRAMME OUTCOMES(PO) PO1 PO2 PO3 PO4 PO5				MEAN SCO	ORE OF CO'S	
	101	102	105	104	100		
CO1	4	4	3	5	4		4.4
CO2	4	5	4	4	5		4.2
CO3	5	4	4 3 4 5			4.6	
CO4	5	4	5	5	4	4.6	
CO5	4	5	5	5	4	4.6	
Mean Overall Score						4.36	

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating	1.1<=rating<	2.1<=rating<	3.1<=rating<	4.1<=rating<
	<=1	=2	=3	=4	=5
Rating	Very Poor	Poor	Moderate	High	Very High

Collection of data: Primary data and Secondary data – meaning – Data collection methods. Measures of central tendency: Arithmetic Mean, Median, Mode. Measures of Dispersion: Range, Quartile Deviation, Mean Deviation, Standard Deviation and Coefficient of Variation.

UNIT - II

Correlation analysis: Karl Pearson's, Spearman's rank and Concurrent deviation methods. Regression Analysis: Simple regression equations.

UNIT - III

Sampling theory: types of sampling – Sampling and non sampling error and Advantages and disadvantages in sampling – probability and non-probability sampling methods.

UNIT - IV

Concept of Sampling distributions – Standard Error – Tests of Significance based on t, Chi – Square and F distributions with respect of Mean, Variance and Correlation coefficient. Large sample tests based on Proportions, Mean, Variance and Correlation coefficient.

UNIT - V

Analysis of Variance – One way and two way classifications. Basic principles of design of experiments: Randomization, Replication and Local Control – CRD, RBD and LSD.

Text Books:

- 1. "Statistical Methods" (32nd edition 2004), Gupta. S. P., Sultan Chand & Sons, New Delhi.
- 2. "Fundamentals of Applied Statistics" (2nd edition 1978), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.
- 3. "Fundamentals of Mathematical Statistics" (11th edition 2002), Gupta. S. C. and Kapoor. V. K., Sultan Chand & Sons, New Delhi.

- 1. "Statistics (Theory and Practice)" (3rd edition 1993), Pillai. R. S. N. and Bagavathi. V. Sultan Chand & Sons, New Delhi.
- 2. "Fundamentals of Statistics Volume II" (6th edition 1990), Goon. A. M., Gupta. M. K. and Dass Gupta. B, The World Press Private Ltd., Calcutta.
- 3. "Mathematical Statistics" (1st edition -2002), Vittal. P. R., Margham Publications, Chennai -17.

MODEL FOR END SEMESTER QUESTION PAPER

UG QUESTION PAPER PATTERN

The following procedure may be followed for the end semester question paper.

Part - A

Answer **all** the questions $(10\times2=20)$

Part - B

Answer **all** the questions (Internal choice, i.e., either or) $(5 \times 5 = 25)$

Part - C

Answer any **three** questions $(3\times10=30)$ (5 questions may be given)

A question paper must contain 80% problems and 20% theory.

All the units must be occurred in each section.

It should be seen that the average student can easily complete the paper within 3 hours and should be able to pass. The question paper should be neither too easy nor too tough.

PG QUESTION PAPER PATTERN

The following procedure may be followed for the end semester question paper.

Part - A

Answer **all** the questions (Internal choice, i.e., either or) $(5 \times 6 = 30)$

Part - B

Answer any **three** questions $(3\times15=45)$ (5 questions may be given)

A question paper must contain 80% problems and 20% theory.

All the units must be occurred in each section.

It should be seen that the average student can easily complete the paper within 3 hours and should be able to pass. The question paper should be neither too easy nor too tough.