ST. JOSEPH'S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE-1

PG & RESEARCH DEPARTMENT OF MATHEMATICS

M.Phil. MATHEMATICS

SYLLABUS (2020-2021)

	PG AND RESEARCH DEPARTMENT OF MATHEMATICS												
	CURRICULUM TEMPLATE												
	M.Phil. MATHEMATICS												
SEMESTER – I													
S.No		Part	Hours/	Credit	Course	Course Title	Ma	aximum]	ximum Marks				
5.110		1 411	Week	Credit	Code	004130 2340	CIA	ESE	TOTAL				
1	III	Core Theory - 1	6	5	MMT101A	Algebra and Analysis	25	75	100				
2	III	Core Theory - 2	6	5	MMT102A	Topology and Differential Equations	25	75	100				
3	III	Core Theory - 3	6	5	GMT201	Elective Paper (Guide Paper)	25	75	100				
4	III	Library	12	-		Science-6 (Library)+6(Lab)	-	-	-				
Se	Semester Total 30		15			75	225	300					
					SEM	ESTER – II							
S.No		Part	Hours/	Credit	Course	Course Title	Maximum Marks						
5.110		rant	Week	Credit	Code	Course Title	CIA	ESE	TOTAL				
5	III	Core Theory - 1		21	JMT201	Dissertation and Viva Voice	100	100	200				
Se	emes	ter Total		21			100	100	200				

YEAR – I		MMT101A	
SEMESTER -I	ALGEBRA AND ANALYSIS	Hrs / Week: 6	
CODE	FOR THE STUDENT ADMITTED	Condita 5	
CORE – I	FROM 2016	Credit: 5	

OBECTIVES:

The course aims to apply the concepts of Rings, Ideals, Modules of Fractions and Primary Decomposition, Abstract Integration, L^p – spaces, Fourier Transforms and Holomorphic Fourier Transforms in Research Paper.

COURSE OUTCOME:

CO1: Knowing the advance concepts of rings, ideals and modules.

CO2: Getting the knowledge of rings modules of Fractions and primary decomposition.

CO3: Knowing the advanced concepts of measure theory and HP spaces.

CO4: Knowing the Fourier transforms and some new types.

CO5: Getting the basic knowledge of research methodology

SEMESTER	COURSE					COURSE TITLE:										HOURS:	CREDIT:
IV	CODE:					ALGEBRA AND ANALYSIS									6	5	
		M	MT1	01A													
COURSE	P	RO	GRA	MM	Ε			PRO	OGI	RAN	ИΜ	E SI	PEC	CIFIC	1		
OUTCOME	O	UT(COM	IE (P	O)				JO	JTC	OM	E(P	PSO)			
	P P P P			P	P	P	P	P	P	P	P	P	PSO	Mean Score of CO's			
	o o o o o		O	S	S	S	S	S	S	S	S	S	10				
	1	2	3	4	5	О	О	O	О	O	0	O	О	О			
						1	2	2	4	5	6	7	8	9			
CO1	4	5	4	3	2	4	3	4	3	4	3	4	4	5	4		3.6
CO2	5	5	5	4	2	3	4	5	4	3	4	3	3	5	4		3.6
CO3	CO3 3 4 4 3 2		2	5	4	3	5	4	4	4	5	3	3		4.0		
CO4	4	5	3	4	2	5	4	4	5	4	3	5	4	4	5		3.9
CO5 3 5 5 3 2			4	4	3	5	4	4	5	3	5	5		3.6			
	•			Me	an (Ove	rall	Sco	re	•	•	•		•			3.7

Result: The Score of this Course is 3.7 (High)

	Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
	Scale	1	2	3	4	5
	Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
ĺ	Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

UNIT I: RINGS, IDEALS AND MODULES

Rings and ring homomorphism-Ideals, Quotient rings-Zero-divisors, Nil potent elements ,units-Prime ideals and maximum ideals-Nil radical and Jacobson radical-operations on ideals-extension and contraction-exercises-Modules and module homomorphism-sub modules and quotient modules-operation on sub modules-Direct sum and product-Finitely generated modules. -Exercises.

UNIT-II: RINGS, MODULES OF FRACTIONS AND PRIMARY DECOMPOSITION

Extract sequences-Tensor product of modules-Restriction and extension of scalars-Exactness properties of the tensor product-Algebra-Tensor product of algebras-Local properties-Extended and contracted ideals in rings of fractions Exercises- Primary decomposition – Exercise.

UNIT-III: ABSTRACT INTEGRATION AND L^P – SPACES L^p – Spaces

Convex Function and Inequalities – The L^p – Spaces – Approximation by Continuous Functions – The Inversion Theorem.

H ^p Spaces

The concept of H^p spaces-the role played by the H^p spaces-simple functions –inequalities-Exercises.

UNIT-IV:FOURIER TRANSFORMS AND HOLOMORPHIC FOURIER TRANSFORMS

Formal properties – The Invention Theorem – the Plancheral Theorem – The Banach algebra Li- Introduction – Two Theorems of Paley and Wiener – Quasi – analytic classes – The Denjoy- Carleman theorem.

UNIT-V: RESEARCH METHODOLOGY

Research – Research methods and methodology –Types of Research – Mode of approach—Art of writing a Research paper and thesis

TEXT BOOKS:

1. M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison – Wesley Publishing Company, 1969.

```
Unit-I Chapter - 1 (pg 1-10), Chapter - 2 (pg 17 - 31)
Unit-II Chapter - 3 (pg 36 - 43), Chapter - 4 (pg 50 - 55)
```

2. Walter Rudin, Real and Complex Analysis II Edition, McGraw Hill International, 1986.

```
Unit – III Chapter - 3 (pg61 – 70), Chapter – 17 (pg335 – 355), Unit-IV Chapter – 9 (pg 178 – 193), Chapter – 19 (pg 371 – 383).
```

3. Unit-V Research Methodologyby S Rajasekar, P Philominathan and V Chinnathambi, e-material at http://arxiv.org/pdf/physics/0601009.pdf

YEAR – I	TOPOLOGY AND DIFFERENTIAL	MMT102A
SEMESTER -I	EQUATIONS	Hrs / Week: 6
CORE-2	FOR THE STUDENT ADMITTED FROM 2016	Credit: 5

OBECTIVES:

The course aims to apply the concepts Fundamental Group, Covering Spaces, Simplified Complexes, Linear Systems, and Non Linear Systems: Local Theory, Techniques and Dynamics of Teaching-Learning in Research Paper.

COURSE OUTCOME:

CO1: Get Knowing the fundamental group and covering spaces

CO2: Knowing the simplicial complexes.

CO3: Knowing the linear systems

CO4: getting the knowledge of nonlinear systems: local theory

CO5: Knowing the techniques and dynamic of teaching.

SEMESTER	COURSE					COURSE TITLE :										HOURS:	CREDIT:
IV	CODE:					TOPOLOGY AND DIFFERENTIAL										6	5
		M	MT1	02A		EQUATIONS											
COURSE	P	RO	GRA	MM	Ε			PRO	OGI	RAN	ИΜ	E S	PEC	CIFIC	1		
OUTCOME	O	UTO	COM	IE (P	O)				JO	JTC	OM						
	P P P P				P	P	P	P	P	P	P	P	P	P	PSO	Mean Scor	re of CO's
	00000088888888810			10													
	1	2	3	4	5	О	О	О	О	O	О	О	О	О			
						1	2	2	4	5	6	7	8	9			
CO1	4	5	4	3	2	4	3	4	3	4	3	4	4	5	4		3.6
CO2	5	5	5	4	2	3	4	5	4	3	4	3	3	5	4		3.5
CO3	CO3 3 4 4 3 2		2	5	4	3	5	4	4	4	5	3	3		4.0		
CO4	4	5	3	4	2	5	4	4	5	4	3	5	4	4	5		3.9
CO5 3 5 5 3 2				4	4	3	5	4	4	5	3	5	5		3.6		
				Me	an (Ove	rall	Sco	re								3.67

Result: The Score of this Course is 3.67 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

UNIT -I: FUNDAMENTAL GROUP AND COVERING SPACES

Homotopy – Fundamental group – Covering spaces.

UNIT - II: SIMPLICIAL COMPLEXES

Geometry of Simplicial Complexes - Bary Centric subdivisions - Simplicial approximation Theorem - Fundamental Group of a simplicial Complex.

UNIT-III: LINEAR SYSTEMS

Uncoupled Linear System – Diagonalization – Exponentionals operators – The Fundamental Theorem for linear system – Linear System in R2 – Complex Eigen Values – Multiple Eigen Values – Non Homogeneous Linear System.

UNIT-IV: NON LINEAR SYSTEMS: LOCAL THEORY

Some preliminary concepts & definitions – The Fundamental Existence – Uniqueness Theorem – Dependence on Initial Conditions and Parameters – The Maximum Interval of Existence- The Flow Defined by a Differential Equation.

UINT-V: TECHNIQUES AND DYNAMICS OF TEACHING- LEARNING

- a. Emerging trends in Educational Psychology– Meaning, Scope and Methods
- b. Learning–Different Theories of learning, Approaches to learning(Classical Conditioning-Ivan Pavlov; Operant conditioning-B.F.Skinner); kinds of learning, factors affecting learning **c.** Motivation: Intrinsic and extrinsic motivation, Development of memory and intelligence.

TEXT BOOKS:

- 1. I.M.Singer, J.A.Thorpe, Lecture notes on Elementary Topology and Geometry, Spring- Verlag, Newyork, 1967.
 - Unit-I -Chapter -3, pg(49-77)Unit-II-Chapter -4, pg (78-108)
- 2. L. Pergo, Differential Equation and Dynamical System, third edition, Springer Verlag, Newyork, 2006
 - Unit-III Chapter -1, sections (1.1 to 1.7 and 1.10) -pg(1-39, 60-63)
 - Unit-IV Chapter -2, sections (2.1 to 2.5)-pg(65-101)
- 3. Unit-V: Covey, Stephen. (2004),7 Habits of Highly effective people, Free Press. Driscoll, M. P. (2005),Psychology of Learning for Instruction, Pearson HigherEd. Gardner, Howard (1983; 1993) Frames of Mind: The theory of multiple intelligences, New York: Basic Books

QUESTION PATTERN

Internal Examination

(25 marks)

Two Internal Examinations 15 marks

Assignment / Seminar 10 marks

Total 25 marks

External Examination

(75 marks)

Question Pattern

M. Phil. COMPUTER SCIENCE

Time: 3 Hours Max. Marks: 75

PART A (5x6=30)

ANSWER ALL FIVE QUESTIONS

Internal Choice (Either or Pattern)

PART B (3x15=45)

ANSWER ANY THREE QUESTIONS

Out of Six Questions (Open Choice)

TOTAL (30+45=75)