ST. JOSEPH'S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

CUDDALORE-1

PG & RESEARCH DEPARTMENT OF MATHEMATICS

M.Phil. MATHEMATICS

SYLLABUS (2021-2022)

			PG A	ND RES	EARCH DEP	ARTMENT OF MATHEMATICS			
					CURRICUI	LUM TEMPLATE			
						ATHEMATICS			
					SEM	ESTER – I			
S.No		Ma	aximum 1	Marks					
5. 1N0		Part	Week	Credit	Code	Course Title	CIA	ESE	TOTAL
1	III	Core Theory - 1	6	5	MMT101A	Algebra and Analysis	25	75	100
2	III	Core Theory - 2	6	5	MMT102A	Topology and Differential Equations	25	75	100
3	III	Core Theory - 3	6	5	GMT201	Elective Paper (Guide Paper)	25	75	100
4	III	Library	-	2		Research and Publication Ethics	-	-	-
Semester Total		30	17			75	225	300	
					SEM	ESTER – II			
S.No		Part	Hours/	Credit	Course	Course Title	Ma	Marks	
212.10	v		Week		Code		CIA	ESE	TOTAL
5	III	I Core Theory - 1 19 JMT201		JMT201	Dissertation and Viva Voice	100	100	200	
S	Semester Total			19			100	100	200

Syllabus -	Mathematics
------------	-------------

YEAR – I		MMT101A
SEMESTER –I	ALGEBRA AND ANALYSIS	Hrs / Week: 6
CODE	FOR THE STUDENT ADMITTED	Creadity 5
CORE – I	FROM 2016	Credit: 5

OBECTIVES:

The course aims to apply the concepts of Rings, Ideals, Modules of Fractions and Primary Decomposition, Abstract Integration, L^p – spaces, Fourier Transforms and Holomorphic Fourier Transforms in Research Paper.

COURSE OUTCOME:

CO1: Knowing the advance concepts of rings, ideals and modules.

CO2: Getting the knowledge of rings modules of Fractions and primary decomposition.

CO3: Knowing the advanced concepts of measure theory and HP spaces.

CO4: Knowing the Fourier transforms and some new types.

CO5: Getting the basic knowledge of research methodology

SEMESTER	COURSE					COURSE TITLE:										HOURS:	CREDIT:
IV	CODE:					ALGEBRA AND ANALYSIS										6	5
		MMT101A															
COURSE	PROGRAMME						PRO	COL	RAN	ИM	E SI	PEC	CIFIC				
OUTCOME	OUTCOME (PO)				OUTCOME(PSO)												
	P P P P P				Р	Р	Р	Р	Р	Р	Р	Р	Р	PSO	Mean Scor	e of CO's	
	00000		S	S	S	S	S	S	S	S	S	10					
	1	2	3	4	5	0	0	0	0	0	0	0	0	0			
						1	2	2	4	5	6	7	8	9			
CO1	4	5	4	3	2	4	3	4	3	4	3	4	4	5	4		3.6
CO2	5	5	5	4	2	3	4	5	4	3	4	3	3	5	4	3.6	
CO3	3	4	4	3	2	5	4	3	5	4	4	4	5	3	3		4.0
CO4	4	5	3	4	2	5	4	4	5	4	3	5	4	4	5	3.9	
CO5 3 5 3 2				4	4	3	5	4	4	5	3	5	5		3.6		
				Me	ean (Dve	rall	Sco	re								3.7

Result: The Score of this Course is 3.7 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

UNIT I: RINGS, IDEALS AND MODULES

Rings and ring homomorphism-Ideals, Quotient rings-Zero-divisors, Nil potent elements ,units-Prime ideals and maximum ideals-Nil radical and Jacobson radical-operations on ideals-extension and contraction-exercises-Modules and module homomorphism-sub modules and quotient modules-operation on sub modules-Direct sum and product-Finitely generated modules. -Exercises.

UNIT-II: RINGS, MODULES OF FRACTIONS AND PRIMARY DECOMPOSITION

Extract sequences-Tensor product of modules-Restriction and extension of scalars-Exactness properties of the tensor product-Algebra-Tensor product of algebras-Local properties-Extended and contracted ideals in rings of fractions Exercises- Primary decomposition – Exercise.

UNIT-III: ABSTRACT INTEGRATION AND L^P – SPACES

L^p– Spaces

Convex Function and Inequalities – The L^{p} – Spaces – Approximation by Continuous Functions – The Inversion Theorem.

H ^p Spaces

The concept of H^p spaces-the role played by the H^p spaces-simple functions –inequalities-Exercises.

UNIT-IV:FOURIER TRANSFORMS AND HOLOMORPHIC FOURIER TRANSFORMS

Formal properties – The Invention Theorem – thePlancheral Theorem – The Banach algebra Li- Introduction – Two Theorems of Paley and Wiener – Quasi – analytic classes – The Denjoy- Carleman theorem.

UNIT-V: RESEARCH METHODOLOGY

Research – Research methods and methodology –Types of Research – Mode of approach–Art of writing a Research paper and thesis

TEXT BOOKS:

- M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison Wesley Publishing Company, 1969. Unit-I Chapter – 1 (pg 1-10), Chapter – 2 (pg 17 – 31) Unit-II Chapter - 3 (pg 36 – 43), Chapter – 4 (pg 50 – 55)
- Walter Rudin, Real and Complex Analysis II Edition, McGraw Hill International, 1986.
 Unit III Chapter 3 (pg61 70), Chapter 17 (pg335 355),
 - Unit-IV Chapter -9 (pg 178 193), Chapter -19(pg 371 383).
- 3. Unit-V Research Methodologyby S Rajasekar, P Philominathan and V Chinnathambi, e-material at <u>http://arxiv.org/pdf/physics/0601009.pdf</u>

YEAR – I	TOPOLOGY AND DIFFERENTIAL	MMT102A
SEMESTER –I	EQUATIONS	Hrs / Week: 6
CORE-2	FOR THE STUDENT ADMITTED FROM 2016	Credit: 5

OBECTIVES:

The course aims to apply the concepts Fundamental Group, Covering Spaces, Simplified Complexes, Linear Systems, and Non Linear Systems: Local Theory, Techniques and Dynamics of Teaching- Learning in Research Paper.

COURSE OUTCOME:

CO1: Get Knowing the fundamental group and covering spaces

CO2: Knowing the simplicial complexes.

CO3: Knowing the linear systems

CO4: getting the knowledge of nonlinear systems: local theory

CO5: Knowing the techniques and dynamic of teaching.

SEMESTER	COURSE								CC	UR	SE	HOURS:	CREDIT:				
IV	CODE:					TOPOLOGY AND DIFFERENTIAL									6	5	
		Ml	MT1	02A		EQUATIONS											
COURSE	P	RO	GRA	MM	E	PROGRAMME SPECIFIC											
OUTCOME	OUTCOME (PO)				OUTCOME(PSO)												
	P P P P P			Р	Р	Р	Р	Р	Р	Р	Р	Р	PSO	Mean Scor	e of CO's		
	00000		S	S	S	S	S	S	S	S	S	10					
	1	2	3	4	5	0	0	0	0	0	0	0	0	0			
						1	2	2	4	5	6	7	8	9			
CO1	4	5	4	3	2	4	3	4	3	4	3	4	4	5	4		3.6
CO2	5	5	5	4	2	3	4	5	4	3	4	3	3	5	4		3.5
CO3	CO3 3 4 4 3 2		5	4	3	5	4	4	4	5	3	3		4.0			
CO4	4	5	3	4	2	5	4	4	5	4	3	5	4	4	5		3.9
CO5 3 5 5 3 2					4	4	3	5	4	4	5	3	5	5		3.6	
				Me	ean (Dve	rall	Sco	re								3.67

Result: The Score of this Course is 3.67 (High)

Association	1%-20%	21%-40%	41%-60%	61%-80%	81%-100%
Scale	1	2	3	4	5
Interval	0<=rating<=1	1.1<=rating<=2	2.1<=rating<=3	3.1<=rating<=4	4.1<=rating<=5
Rating	Very Poor	Poor	Moderate	High	Very High

This Course is having **HIGH** association with Programme Outcomes and Programme Specific Outcomes.

UNIT -I: FUNDAMENTAL GROUP AND COVERING SPACES

Homotopy – Fundamental group – Covering spaces.

UNIT - II: SIMPLICIAL COMPLEXES

Geometry of Simplicial Complexes - Bary Centric subdivisions - Simplicial approximation Theorem – Fundamental Group of a simplicial Complex.

UNIT-III: LINEAR SYSTEMS

Uncoupled Linear System - Diagonalization - Exponentionals operators - The Fundamental Theorem for linear system – Linear System in R2 – Complex Eigen Values – Multiple Eigen Values - Non Homogeneous Linear System.

UNIT-IV: NON LINEAR SYSTEMS: LOCAL THEORY

Some preliminary concepts & definitions - The Fundamental Existence - Uniqueness Theorem - Dependence on Initial Conditions and Parameters - The Maximum Interval of Existence- The Flow Defined by a Differential Equation.

UINT-V: TECHNIQUES AND DYNAMICS OF TEACHING- LEARNING

a. Emerging trends in Educational Psychology– Meaning, Scope and Methods

b. Learning-Different Theories of learning, Approaches to learning(Classical Conditioning-Ivan Pavlov; Operant conditioning-B.F.Skinner); kinds of learning, factors affecting learning c. Motivation: Intrinsic and extrinsic motivation, Development of memory and intelligence.

TEXT BOOKS:

1. I.M.Singer, J.A.Thorpe, Lecture notes on Elementary Topology and Geometry, Spring- Verlag, Newyork, 1967.

Unit-I -Chapter -3 ,pg(49-77)Unit-II-Chapter -4 ,pg (78-108)

2. L.Pergo, Differential Equation and Dynamical System, thirdedition, Springer –Verlag, Newyork,2006

Unit-III Chapter -1, sections (1.1 to 1.7 and 1.10) -pg(1-39, 60-63)

Chapter -2, sections (2.1 to 2.5)-pg(65-101) Unit-IV

3. Unit-V: Covey, Stephen. (2004),7 Habits of Highly effective people, Free Press. Driscoll, M. P. (2005), Psychology of Learning for Instruction, Pearson HigherEd. Gardner, Howard (1983; 1993) Frames of Mind: The theory of multiple intelligences, New York: Basic Books

QUESTION PATTERN

15 marks

10 marks

25 marks

Internal Examination

(25 marks)

Two Internal Examinations

Assignment / Seminar

Total

External Examination

(75 marks)

Question Pattern

M. Phil. COMPUTER SCIENCE

Time: 3 Hours

Max. Marks: 75

PART A (5x6=30)

ANSWER ALL FIVE QUESTIONS

Internal Choice (Either or Pattern)

PART B (3x15=45)

ANSWER ANY THREE QUESTIONS

Out of Six Questions (Open Choice)

TOTAL (30+45=75)